23 research outputs found

    Renormalization group theory of the critical properties of the interacting bose fluid

    Get PDF
    Starting from a functional integral representation of the partition function we apply the renormalization group to the interacting Bose fluid. A closed form for the renormalization equation is derived and the critical exponents are calculated in 4-ε dimensions

    Fractional exponential decay in the capture of ligands by randomly distributed traps in one dimension

    Get PDF
    In many biophysical and biochemical experiments one observes the decay of some ligand population by an appropriate system of traps. We analyse this decay for a one-dimensional system of radomly distributed traps, and show that one can distinguish three different regimes. The decay starts with a fractional exponential of the form exp[− (t/t0)1/2], which changes into a fractional exponential of the form exp[− (t/t1)1/3] for long times, which in its turn changes into a pure exponential time dependence, i.e. exp[−t/t2] for very long times. With these three regimes, we associate three time scales, related to the average trap density and the diffusion constant characterizing the motion of the ligands

    Crosslinking and gelation between linear polymers: DNA-antibody complexes in systemic lupus erythematosus

    Get PDF
    In the autoimmune disease systemic lupus erythematosus the DNA molecules of an individual are attacked by its own antibodies. As these antibodies are bivalent they can crosslink different DNA molecules which can lead to the formation of DNA-antibody complexes and gels. Statistical properties of these complexes are derived and evaluated analytically in the limit of very long DNA molecules, as well as the concentrations at which a gel is being formed. The authors also present various numerical results for DNA molecules of intermediate lengths. This work can also be considered as a theory of the crosslinking and gelation of linear polymer

    Chaotic motion of a harmonically bound charged particle in a magnetic field, in the presence of a half-plane barrier

    Get PDF
    The motion in the plane of an harmonically bound charged particle interacting with a magnetic field and a half-plane barrier along the positive x-axis is studied. The magnetic field is perpendicular to the plane in which the particle moves. This motion is integrable in between collisions of the particle with the barrier. However, the overall motion of the particle is very complicated. Chaotic regions in phase space exist next to island structures associated with linearly stable periodic orbits. We study in detail periodic orbits of low period and in particular their bifurcation behavior. Independent sequences of period doubling bifurcations and resonant bifurcations are observed associated with independent fixed points in the Poincaré section. Due to the perpendicular magnetic field an orientation is induced on the plane and time-reversal symmetry is broken.\u

    Introduction to path-integral methods in physics and polymer science

    No full text
    xi, 197 p. : ill. ; 24 cm

    Fluid Flow Through Porous Macromolecular Systems

    No full text

    Physical principles in chemoreception

    No full text
    Is it not sheer foolishness to try to apply the methods of theoretical physics to biological structures? Physics flowered because it limited itself to the study of very simple systems; on the other hand, the essence of "living things" seems to have to do with the extreme intricacy of their structure. Is it a hopeless endeavour to attempt to bring the two together, or should one try nevertheless? Most of my colleagues in theoretical physics feel one should not waste one's time and stick to "the good old hydrogen atom", but some of them feel one should try anyhow. This minority point of view was shared by Bohr in the thirties, Schrödinger in the fourties, Delbrück in the fifties and sixties, PurceIl in the seventies, etc. The theory of chemoreception represents only a very small part of this immense scientific question. Its study was started by Delbriick and others in the fifties. I was introduced to these problems by Charles DeLisi, during a visit to the National Institutes of Health in the summer of 1980. During the following decade I had the pleasure to collaborate with George Bell, Byron Goldstein, Alan Perelson and others at the Los Alamos National Laboratory. We studied a wide variety of questions, some of them relevant to the theory of chemoreception. I am grateful to them, both for the pleasure which our joint research always gives to me, as weIl as for their friendship and hospitality
    corecore