1,197 research outputs found
Highly sensitive multichannel spectrometer for subpicosecond spectroscopy in the midinfrared
A spectrometer system is presented for time-resolved probing in the midinfrared between 5 and 11 /tLmw ith a
temporal resolution of better than 400 fs. Multichannel detection with HgCdTe detector arrays consisting of
ten elements in combination with a high repetition rate permits one to record weak absorbance changes with an
accuracy of 0.1 mOD
Field-induced insulating states in a graphene superlattice
We report on high-field magnetotransport (B up to 35 T) on a gated
superlattice based on single-layer graphene aligned on top of hexagonal boron
nitride. The large-period moir\'e modulation (15 nm) enables us to access the
Hofstadter spectrum in the vicinity of and above one flux quantum per
superlattice unit cell (Phi/Phi_0 = 1 at B = 22 T). We thereby reveal, in
addition to the spin-valley antiferromagnet at nu = 0, two insulating states
developing in positive and negative effective magnetic fields from the main nu
= 1 and nu = -2 quantum Hall states respectively. We investigate the field
dependence of the energy gaps associated with these insulating states, which we
quantify from the temperature-activated peak resistance. Referring to a simple
model of local Landau quantization of third generation Dirac fermions arising
at Phi/Phi_0 = 1, we describe the different microscopic origins of the
insulating states and experimentally determine the energy-momentum dispersion
of the emergent gapped Dirac quasi-particles
Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field
We report on transport and capacitance measurements of graphene devices in
magnetic fields up to 30 T. In both techniques, we observe the full splitting
of Landau levels and we employ tilted field experiments to address the origin
of the observed broken symmetry states. In the lowest energy level, the spin
degeneracy is removed at filling factors and we observe an enhanced
energy gap. In the higher levels, the valley degeneracy is removed at odd
filling factors while spin polarized states are formed at even . Although
the observation of odd filling factors in the higher levels points towards the
spontaneous origin of the splitting, we find that the main contribution to the
gap at , and is due to the Zeeman energy.Comment: 5 pages, 4 figure
Crossover between distinct mechanisms of microwave photoresistance in bilayer systems
We report on temperature-dependent magnetoresistance measurements in balanced
double quantum wells exposed to microwave irradiation for various frequencies.
We have found that the resistance oscillations are described by the
microwave-induced modification of electron distribution function limited by
inelastic scattering (inelastic mechanism), up to a temperature of T*~4 K. With
increasing temperature, a strong deviation of the oscillation amplitudes from
the behavior predicted by this mechanism is observed, presumably indicating a
crossover to another mechanism of microwave photoresistance, with similar
frequency dependence. Our analysis shows that this deviation cannot be fully
understood in terms of contribution from the mechanisms discussed in theory.Comment: 7 pages, 4 figure
Transport and thermoelectric properties of the LaAlO/SrTiO interface
The transport and thermoelectric properties of the interface between
SrTiO and a 26-monolayer thick LaAlO-layer grown at high
oxygen-pressure have been investigated at temperatures from 4.2 K to 100 K and
in magnetic fields up to 18 T. For 4.2 K, two different electron-like
charge carriers originating from two electron channels which contribute to
transport are observed. We probe the contributions of a degenerate and a
non-degenerate band to the thermoelectric power and develop a consistent model
to describe the temperature dependence of the thermoelectric tensor. Anomalies
in the data point to an additional magnetic field dependent scattering.Comment: 7 pages, 4 figure
Coexistence of bulk and surface states probed by Shubnikov-de Haas oscillations in BiSe with high charge-carrier density
Topological insulators are ideally represented as having an insulating bulk
with topologically protected, spin-textured surface states. However, it is
increasingly becoming clear that these surface transport channels can be
accompanied by a finite conducting bulk, as well as additional topologically
trivial surface states. To investigate these parallel conduction transport
channels, we studied Shubnikov-de Haas oscillations in BiSe thin films,
in high magnetic fields up to 30 T so as to access channels with a lower
mobility. We identify a clear Zeeman-split bulk contribution to the
oscillations from a comparison between the charge-carrier densities extracted
from the magnetoresistance and the oscillations. Furthermore, our analyses
indicate the presence of a two-dimensional state and signatures of additional
states the origin of which cannot be conclusively determined. Our findings
underpin the necessity of theoretical studies on the origin of and the
interplay between these parallel conduction channels for a careful analysis of
the material's performance.Comment: Manuscript including supplemental materia
Linear magnetoresistance in a quasi-free two dimensional electron gas in an ultra-high mobility GaAs quantum well
We report a magnetotransport study of an ultra-high mobility
(\,cm\,V\,s) -type GaAs
quantum well up to 33 T. A strong linear magnetoresistance (LMR) of the order
of 10 % is observed in a wide temperature range between 0.3 K and 60 K. The
simplicity of our material system with a single sub-band occupation and free
electron dispersion rules out most complicated mechanisms that could give rise
to the observed LMR. At low temperature, quantum oscillations are superimposed
onto the LMR. Both, the featureless LMR at high and the quantum
oscillations at low follow the empirical resistance rule which states that
the longitudinal conductance is directly related to the derivative of the
transversal (Hall) conductance multiplied by the magnetic field and a constant
factor that remains unchanged over the entire temperature range. Only
at low temperatures, small deviations from this resistance rule are observed
beyond that likely originate from a different transport mechanism for
the composite fermions
Magnetoresistance oscillations in multilayer systems - triple quantum wells
Magnetoresistance of two-dimensional electron systems with several occupied
subbands oscillates owing to periodic modulation of the probability of
intersubband transitions by the quantizing magnetic field. In addition to
previous investigations of these magneto-intersubband (MIS) oscillations in
two-subband systems, we report on both experimental and theoretical studies of
such a phenomenon in three-subband systems realized in triple quantum wells. We
show that the presence of more than two subbands leads to a qualitatively
different MIS oscillation picture, described as a superposition of several
oscillating contributions. Under a continuous microwave irradiation, the
magnetoresistance of triple-well systems exhibits an interference of MIS
oscillations and microwaveinduced resistance oscillations. The theory
explaining these phenomena is presented in the general form, valid for an
arbitrary number of subbands. A comparison of theory and experiment allows us
to extract temperature dependence of quantum lifetime of electrons and to
confirm the applicability of the inelastic mechanism of microwave
photoresistance for the description of magnetotransport in multilayer systems.Comment: 10 pages, 5 figure
- …