1,197 research outputs found

    Highly sensitive multichannel spectrometer for subpicosecond spectroscopy in the midinfrared

    Get PDF
    A spectrometer system is presented for time-resolved probing in the midinfrared between 5 and 11 /tLmw ith a temporal resolution of better than 400 fs. Multichannel detection with HgCdTe detector arrays consisting of ten elements in combination with a high repetition rate permits one to record weak absorbance changes with an accuracy of 0.1 mOD

    Field-induced insulating states in a graphene superlattice

    Get PDF
    We report on high-field magnetotransport (B up to 35 T) on a gated superlattice based on single-layer graphene aligned on top of hexagonal boron nitride. The large-period moir\'e modulation (15 nm) enables us to access the Hofstadter spectrum in the vicinity of and above one flux quantum per superlattice unit cell (Phi/Phi_0 = 1 at B = 22 T). We thereby reveal, in addition to the spin-valley antiferromagnet at nu = 0, two insulating states developing in positive and negative effective magnetic fields from the main nu = 1 and nu = -2 quantum Hall states respectively. We investigate the field dependence of the energy gaps associated with these insulating states, which we quantify from the temperature-activated peak resistance. Referring to a simple model of local Landau quantization of third generation Dirac fermions arising at Phi/Phi_0 = 1, we describe the different microscopic origins of the insulating states and experimentally determine the energy-momentum dispersion of the emergent gapped Dirac quasi-particles

    Lifting of the Landau level degeneracy in graphene devices in a tilted magnetic field

    Get PDF
    We report on transport and capacitance measurements of graphene devices in magnetic fields up to 30 T. In both techniques, we observe the full splitting of Landau levels and we employ tilted field experiments to address the origin of the observed broken symmetry states. In the lowest energy level, the spin degeneracy is removed at filling factors ν=±1\nu=\pm1 and we observe an enhanced energy gap. In the higher levels, the valley degeneracy is removed at odd filling factors while spin polarized states are formed at even ν\nu. Although the observation of odd filling factors in the higher levels points towards the spontaneous origin of the splitting, we find that the main contribution to the gap at ν=−4,−8\nu= -4,-8, and −12-12 is due to the Zeeman energy.Comment: 5 pages, 4 figure

    Crossover between distinct mechanisms of microwave photoresistance in bilayer systems

    Full text link
    We report on temperature-dependent magnetoresistance measurements in balanced double quantum wells exposed to microwave irradiation for various frequencies. We have found that the resistance oscillations are described by the microwave-induced modification of electron distribution function limited by inelastic scattering (inelastic mechanism), up to a temperature of T*~4 K. With increasing temperature, a strong deviation of the oscillation amplitudes from the behavior predicted by this mechanism is observed, presumably indicating a crossover to another mechanism of microwave photoresistance, with similar frequency dependence. Our analysis shows that this deviation cannot be fully understood in terms of contribution from the mechanisms discussed in theory.Comment: 7 pages, 4 figure

    Transport and thermoelectric properties of the LaAlO3_3/SrTiO3_3 interface

    Get PDF
    The transport and thermoelectric properties of the interface between SrTiO3_3 and a 26-monolayer thick LaAlO3_3-layer grown at high oxygen-pressure have been investigated at temperatures from 4.2 K to 100 K and in magnetic fields up to 18 T. For T>T> 4.2 K, two different electron-like charge carriers originating from two electron channels which contribute to transport are observed. We probe the contributions of a degenerate and a non-degenerate band to the thermoelectric power and develop a consistent model to describe the temperature dependence of the thermoelectric tensor. Anomalies in the data point to an additional magnetic field dependent scattering.Comment: 7 pages, 4 figure

    Coexistence of bulk and surface states probed by Shubnikov-de Haas oscillations in Bi2_2Se3_3 with high charge-carrier density

    Get PDF
    Topological insulators are ideally represented as having an insulating bulk with topologically protected, spin-textured surface states. However, it is increasingly becoming clear that these surface transport channels can be accompanied by a finite conducting bulk, as well as additional topologically trivial surface states. To investigate these parallel conduction transport channels, we studied Shubnikov-de Haas oscillations in Bi2_2Se3_3 thin films, in high magnetic fields up to 30 T so as to access channels with a lower mobility. We identify a clear Zeeman-split bulk contribution to the oscillations from a comparison between the charge-carrier densities extracted from the magnetoresistance and the oscillations. Furthermore, our analyses indicate the presence of a two-dimensional state and signatures of additional states the origin of which cannot be conclusively determined. Our findings underpin the necessity of theoretical studies on the origin of and the interplay between these parallel conduction channels for a careful analysis of the material's performance.Comment: Manuscript including supplemental materia

    Linear magnetoresistance in a quasi-free two dimensional electron gas in an ultra-high mobility GaAs quantum well

    Get PDF
    We report a magnetotransport study of an ultra-high mobility (μˉ≈25×106\bar{\mu}\approx 25\times 10^6\,cm2^2\,V−1^{-1}\,s−1^{-1}) nn-type GaAs quantum well up to 33 T. A strong linear magnetoresistance (LMR) of the order of 105^5 % is observed in a wide temperature range between 0.3 K and 60 K. The simplicity of our material system with a single sub-band occupation and free electron dispersion rules out most complicated mechanisms that could give rise to the observed LMR. At low temperature, quantum oscillations are superimposed onto the LMR. Both, the featureless LMR at high TT and the quantum oscillations at low TT follow the empirical resistance rule which states that the longitudinal conductance is directly related to the derivative of the transversal (Hall) conductance multiplied by the magnetic field and a constant factor α\alpha that remains unchanged over the entire temperature range. Only at low temperatures, small deviations from this resistance rule are observed beyond ν=1\nu=1 that likely originate from a different transport mechanism for the composite fermions

    Magnetoresistance oscillations in multilayer systems - triple quantum wells

    Full text link
    Magnetoresistance of two-dimensional electron systems with several occupied subbands oscillates owing to periodic modulation of the probability of intersubband transitions by the quantizing magnetic field. In addition to previous investigations of these magneto-intersubband (MIS) oscillations in two-subband systems, we report on both experimental and theoretical studies of such a phenomenon in three-subband systems realized in triple quantum wells. We show that the presence of more than two subbands leads to a qualitatively different MIS oscillation picture, described as a superposition of several oscillating contributions. Under a continuous microwave irradiation, the magnetoresistance of triple-well systems exhibits an interference of MIS oscillations and microwaveinduced resistance oscillations. The theory explaining these phenomena is presented in the general form, valid for an arbitrary number of subbands. A comparison of theory and experiment allows us to extract temperature dependence of quantum lifetime of electrons and to confirm the applicability of the inelastic mechanism of microwave photoresistance for the description of magnetotransport in multilayer systems.Comment: 10 pages, 5 figure
    • …
    corecore