510 research outputs found

    Applying population and community ecology theory to advance understanding of belowground biogeochemistry

    Get PDF
    Approaches to quantifying and predicting soil biogeochemical cycles mostly consider microbial biomass and community composition as products of the abiotic environment. Current numerical approaches then primarily emphasise the importance of microbe–environment interactions and physiology as controls on biogeochemical cycles. Decidedly less attention has been paid to understanding control exerted by community dynamics and biotic interactions. Yet a rich literature of theoretical and empirical contributions highlights the importance of considering how variation in microbial population ecology, especially biotic interactions, is related to variation in key biogeochemical processes like soil carbon formation. We demonstrate how a population and community ecology perspective can be used to (1) understand the impact of microbial communities on biogeochemical cycles and (2) reframe current theory and models to include more detailed microbial ecology. Through a series of simulations we illustrate how density dependence and key biotic interactions, such as competition and predation, can determine the degree to which microbes regulate soil biogeochemical cycles. The ecological perspective and model simulations we present lay the foundation for developing empirical research and complementary models that explore the diversity of ecological mechanisms that operate in microbial communities to regulate biogeochemical processes

    Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model

    Get PDF
    A growing body of literature documents the pressing need to develop soil biogeochemistry models that more accurately reflect contemporary understanding of soil processes and better capture soil carbon (C) responses to environmental perturbations. Models that explicitly represent microbial activity offer inroads to improve representations of soil biogeochemical processes, but have yet to consider relationships between litter quality, functional differences in microbial physiology, and the physical protection of microbial byproducts in forming stable soil organic matter (SOM). To address these limitations, we introduce the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, and evaluate it by comparing site-level soil C projections with observations from a long-term litter decomposition study and soil warming experiment. In MIMICS, the turnover of litter and SOM pools is governed by temperature-sensitive Michaelis–Menten kinetics and the activity of two physiologically distinct microbial functional types. The production of microbial residues through microbial turnover provides inputs to SOM pools that are considered physically or chemically protected. Soil clay content determines the physical protection of SOM in different soil environments. MIMICS adequately simulates the mean rate of leaf litter decomposition observed at temperate and boreal forest sites, and captures observed effects of litter quality on decomposition rates. Moreover, MIMICS better captures the response of SOM pools to experimental warming, with rapid SOM losses but declining temperature sensitivity to long-term warming, compared with a more conventional model structure. MIMICS incorporates current microbial theory to explore the mechanisms by which litter C is converted to stable SOM, and to improve predictions of soil C responses to environmental change

    First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3

    Full text link
    We carry out a completely first-principles study of the ferroelectric phase transitions in BaTiO3_3. Our approach takes advantage of two features of these transitions: the structural changes are small, and only low-energy distortions are important. Based on these observations, we make systematically improvable approximations which enable the parameterization of the complicated energy surface. The parameters are determined from first-principles total-energy calculations using ultra-soft pseudopotentials and a preconditioned conjugate-gradient scheme. The resulting effective Hamiltonian is then solved by Monte Carlo simulation. The calculated phase sequence, transition temperatures, latent heats, and spontaneous polarizations are all in good agreement with experiment. We find the transitions to be intermediate between order-disorder and displacive character. We find all three phase transitions to be of first order. The roles of different interactions are discussed.Comment: 33 pages latex file, 9 figure

    N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rastetter, E., Kwiatkowski, B., Kicklighter, D., Plotkin, A., Genet, H., Nippert, J., O’Keefe, K., Perakis, S., Porder, S., Roley, S., Ruess, R., Thompson, J., Wieder, W., Wilcox, K., & Yanai, R. N and P constrain C in ecosystems under climate change: role of nutrient redistribution, accumulation, and stoichiometry. Ecological Applications, (2022): e2684, https://doi.org/10.1002/eap.2684.We use the Multiple Element Limitation (MEL) model to examine responses of 12 ecosystems to elevated carbon dioxide (CO2), warming, and 20% decreases or increases in precipitation. Ecosystems respond synergistically to elevated CO2, warming, and decreased precipitation combined because higher water-use efficiency with elevated CO2 and higher fertility with warming compensate for responses to drought. Response to elevated CO2, warming, and increased precipitation combined is additive. We analyze changes in ecosystem carbon (C) based on four nitrogen (N) and four phosphorus (P) attribution factors: (1) changes in total ecosystem N and P, (2) changes in N and P distribution between vegetation and soil, (3) changes in vegetation C:N and C:P ratios, and (4) changes in soil C:N and C:P ratios. In the combined CO2 and climate change simulations, all ecosystems gain C. The contributions of these four attribution factors to changes in ecosystem C storage varies among ecosystems because of differences in the initial distributions of N and P between vegetation and soil and the openness of the ecosystem N and P cycles. The net transfer of N and P from soil to vegetation dominates the C response of forests. For tundra and grasslands, the C gain is also associated with increased soil C:N and C:P. In ecosystems with symbiotic N fixation, C gains resulted from N accumulation. Because of differences in N versus P cycle openness and the distribution of organic matter between vegetation and soil, changes in the N and P attribution factors do not always parallel one another. Differences among ecosystems in C-nutrient interactions and the amount of woody biomass interact to shape ecosystem C sequestration under simulated global change. We suggest that future studies quantify the openness of the N and P cycles and changes in the distribution of C, N, and P among ecosystem components, which currently limit understanding of nutrient effects on C sequestration and responses to elevated CO2 and climate change.This material is based on work supported by the National Science Foundation under Grant No. 1651722 as well through the NSF LTER Program 1637459, 2220863 (ARC), 1637686 (NWT), 1832042 (KBS), 2025849 (KNZ), 1636476 (BNZ), 1637685 (HBR), 1832210 (HFR), 2025755 (AND). We also acknowledge NSF grants 1637653 and 1754126 (INCyTE RCN), and DOE grant DESC0019037. We also acknowledge support through the USDA Forest Service Hubbard Brook Experimental Forest, North Woodstock, New Hampshie (USDA NIFA 2019-67019-29464) and Pacific Northwest Research Station, Corvallis, Oregon

    The physics of dynamical atomic charges: the case of ABO3 compounds

    Full text link
    Based on recent first-principles computations in perovskite compounds, especially BaTiO3, we examine the significance of the Born effective charge concept and contrast it with other atomic charge definitions, either static (Mulliken, Bader...) or dynamical (Callen, Szigeti...). It is shown that static and dynamical charges are not driven by the same underlying parameters. A unified treatment of dynamical charges in periodic solids and large clusters is proposed. The origin of the difference between static and dynamical charges is discussed in terms of local polarizability and delocalized transfers of charge: local models succeed in reproducing anomalous effective charges thanks to large atomic polarizabilities but, in ABO3 compounds, ab initio calculations favor the physical picture based upon transfer of charges. Various results concerning barium and strontium titanates are presented. The origin of anomalous Born effective charges is discussed thanks to a band-by-band decomposition which allows to identify the displacement of the Wannier center of separated bands induced by an atomic displacement. The sensitivity of the Born effective charges to microscopic and macroscopic strains is examined. Finally, we estimate the spontaneous polarization in the four phases of barium titanate.Comment: 25 pages, 6 Figures, 10 Tables, LaTe

    Hierarchical Dobinski-type relations via substitution and the moment problem

    Full text link
    We consider the transformation properties of integer sequences arising from the normal ordering of exponentiated boson ([a,a*]=1) monomials of the form exp(x (a*)^r a), r=1,2,..., under the composition of their exponential generating functions (egf). They turn out to be of Sheffer-type. We demonstrate that two key properties of these sequences remain preserved under substitutional composition: (a)the property of being the solution of the Stieltjes moment problem; and (b) the representation of these sequences through infinite series (Dobinski-type relations). We present a number of examples of such composition satisfying properties (a) and (b). We obtain new Dobinski-type formulas and solve the associated moment problem for several hierarchically defined combinatorial families of sequences.Comment: 14 pages, 31 reference

    Achieving saturation in vertical organic transistors for organic light-emitting diode driving by nanorod channel geometric control

    Get PDF
    When conventional field-effect transistors with short channel length suffer from non-saturated output characteristics, this work proposed a vertical channel transistor to operate like a solid-state vacuum tube and exhibit good saturated curves. We utilized deep ultra-violet interference lithography to produce ordered grid-like metal to control the potential profile in vertical channel. We compared experimental and simulated characteristics to investigate the keys to achieve saturation. Finally, with an optimized design, a vertical organic transistor is used to drive a solution-processed white-light organic light-emitting diode to perform a luminescence control (0-260 cd/m(2)) with a 3.3-V base potential swing. (C) 2013 AIP Publishing LLC. [10.1063/1.4802999

    Measurement of the Spin-Dependence of the pbar-p Interaction at the AD-Ring

    Full text link
    We propose to use an internal polarized hydrogen storage cell gas target in the AD ring to determine for the first time the two total spin-dependent pbar-p cross sections sigma_1 and sigma_2 at antiproton beam energies in the range from 50 to 450 MeV. The data obtained are of interest by themselves for the general theory of pbar-p interactions since they will provide a first experimental constraint of the spin-spin dependence of the nucleon-antinucleon potential in the energy range of interest. In addition, measurements of the polarization buildup of stored antiprotons are required to define the optimum parameters of a future, dedicated Antiproton Polarizer Ring (APR), intended to feed a double-polarized asymmetric pbar-p collider with polarized antiprotons. Such a machine has recently been proposed by the PAX collaboration for the new Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt, Germany. The availability of an intense stored beam of polarized antiprotons will provide access to a wealth of single- and double-spin observables, thereby opening a new window on QCD spin physics.Comment: 51 pages, 23 figures, proposal submitted to the SPS committee of CER

    Polarizing a stored proton beam by spin flip?

    Get PDF
    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.Comment: 18 pages, 6 figure

    Synergies Among Environmental Science Research and Monitoring Networks: A Research Agenda

    Get PDF
    Many research and monitoring networks in recent decades have provided publicly available data documenting environmental and ecological change, but little is known about the status of efforts to synthesize this information across networks. We convened a working group to assess ongoing and potential cross-network synthesis research and outline opportunities and challenges for the future, focusing on the US-based research network (the US Long-Term Ecological Research network, LTER) and monitoring network (the National Ecological Observatory Network, NEON). LTER-NEON cross-network research synergies arise from the potentials for LTER measurements, experiments, models, and observational studies to provide context and mechanisms for interpreting NEON data, and for NEON measurements to provide standardization and broad scale coverage that complement LTER studies. Initial cross-network syntheses at co-located sites in the LTER and NEON networks are addressing six broad topics: how long-term vegetation change influences C fluxes; how detailed remotely sensed data reveal vegetation structure and function; aquatic-terrestrial connections of nutrient cycling; ecosystem response to soil biogeochemistry and microbial processes; population and species responses to environmental change; and disturbance, stability and resilience. This initial study offers exciting potentials for expanded cross-network syntheses involving multiple long-term ecosystem processes at regional or continental scales. These potential syntheses could provide a pathway for the broader scientific community, beyond LTER and NEON, to engage in cross-network science. These examples also apply to many other research and monitoring networks in the US and globally, and can guide scientists and research administrators in promoting broad-scale research that supports resource management and environmental policy
    corecore