133 research outputs found

    Insulator-to-metal transition in sulfur-doped silicon

    Get PDF
    We observe an insulator-to-metal (I-M) transition in crystalline silicon doped with sulfur to non- equilibrium concentrations using ion implantation followed by pulsed laser melting and rapid resolidification. This I-M transition is due to a dopant known to produce only deep levels at equilibrium concentrations. Temperature-dependent conductivity and Hall effect measurements for temperatures T > 1.7 K both indicate that a transition from insulating to metallic conduction occurs at a sulfur concentration between 1.8 and 4.3 x 10^20 cm-3. Conduction in insulating samples is consistent with variable range hopping with a Coulomb gap. The capacity for deep states to effect metallic conduction by delocalization is the only known route to bulk intermediate band photovoltaics in silicon.Comment: Submission formatting; 4 journal pages equivalen

    Dasatinib inhibits the growth of molecularly heterogeneous myeloid leukemias.

    Get PDF
    PURPOSE: Dasatinib is a dual Src/Abl inhibitor recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: We studied growth factor-dependent and growth factor-independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib. RESULTS: Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at approximately 1 x 10(-9) mol/L. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at approximately 1 x 10(-6) mol/L. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI(50) of 5 x 10(-9) mol/L. Primary AML blast cells exhibited a growth inhibition of \u3c1 x\u3e10(-6) mol/L. Cell lines that showed growth inhibition at approximately 1 x 10(-6) mol/L showed a G(1) cell cycle arrest and correlated with accumulation of p21 and p27 protein. The addition of rapamycin or cytotoxic agents enhanced growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit. CONCLUSIONS: Although all of the precise targets for dasatinib are not known, this multikinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. The addition of cytotoxic or targeted agents can enhance its effects

    A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models

    Get PDF
    Progressive kidney diseases are often associated with scarring of the kidney’s filtration unit, a condition called focal segmental glomerulosclerosis (FSGS). This scarring is due to loss of podocytes, cells critical for glomerular filtration, and leads to proteinuria and kidney failure. Inherited forms of FSGS are caused by Rac1-activating mutations, and Rac1 induces TRPC5 ion channel activity and cytoskeletal remodeling in podocytes. Whether TRPC5 activity mediates FSGS onset and progression is unknown. We identified a small molecule, AC1903, that specifically blocks TRPC5 channel activity in glomeruli of proteinuric rats. Chronic administration of AC1903 suppressed severe proteinuria and prevented podocyte loss in a transgenic rat model of FSGS. AC1903 also provided therapeutic benefit in a rat model of hypertensive proteinuric kidney disease. These data indicate that TRPC5 activity drives disease and that TRPC5 inhibitors may be valuable for the treatment of progressive kidney diseases.National Institutes of Health (U.S.) (Grant DK095045)National Institutes of Health (U.S.) (Grant DK099465)National Institutes of Health (U.S.) (Grant DK103658)National Institutes of Health (U.S.) (Grant DK083511)National Institutes of Health (U.S.) (Grant DK093746

    Functional Impairment of Central Memory CD4 T Cells Is a Potential Early Prognostic Marker for Changing Viral Load in SHIV-Infected Rhesus Macaques

    Get PDF
    In HIV infection there is a paucity of literature about the degree of immune dysfunction to potentially correlate and/or predict disease progression relative to CD4+ T cells count or viral load. We assessed functional characteristics of memory T cells subsets as potential prognostic markers for changing viral loads and/or disease progression using the SHIV-infected rhesus macaque model. Relative to long-term non-progressors with low/undetectable viral loads, those with chronic plasma viremia, but clinically healthy, exhibited significantly lower numbers and functional impairment of CD4+ T cells, but not CD8+ T cells, in terms of IL-2 production by central memory subset in response to PMA and ionomycine (PMA+I) stimulation. Highly viremic animals showed impaired cytokine-production by all T cells subsets. These results suggest that functional impairment of CD4+ T cells in general, and of central memory subset in particular, may be a potential indicator/predictor of chronic infection with immune dysfunction, which could be assayed relatively easily using non-specific PMA+I stimulation

    Phosphatidylinositol 3-Kinase Mediates Bronchioalveolar Stem Cell Expansion in Mouse Models of Oncogenic K-ras-Induced Lung Cancer

    Get PDF
    Background: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in Western countries. Developing more effective NSCLC therapeutics will require the elucidation of the genetic and biochemical bases for this disease. Bronchioalveolar stem cells (BASCs) are a putative cancer stem cell population in mouse models of oncogenic K-ras-induced lung adenocarcinoma, an histologic subtype of NSCLC. The signals activated by oncogenic K-ras that mediate BASC expansion have not been fully defined. Methodology/Principal Findings: We used genetic and pharmacologic approaches to modulate the activity of phosphatidylinositol 3-kinase (PI3K), a key mediator of oncogenic K-ras, in two genetic mouse models of lung adenocarcinoma. Oncogenic K-ras-induced BASC accumulation and tumor growth were blocked by treatment with a small molecule PI3K inhibitor and enhanced by inactivation of phosphatase and tensin homologue deleted from chromosome 10, a negative regulator of PI3K. Conclusions/Significance: We conclude that PI3K is a critical regulator of BASC expansion, supporting treatment strategies to target PI3K in NSCLC patients

    PR1-Specific T Cells Are Associated with Unmaintained Cytogenetic Remission of Chronic Myelogenous Leukemia After Interferon Withdrawal

    Get PDF
    Interferon-alpha (IFN) induces complete cytogenetic remission (CCR) in 20-25% CML patients and in a small minority of patients; CCR persists after IFN is stopped. IFN induces CCR in part by increasing cytotoxic T lymphocytes (CTL) specific for PR1, the HLA-A2-restricted 9-mer peptide from proteinase 3 and neutrophil elastase, but it is unknown how CCR persists after IFN is stopped.We reasoned that PR1-CTL persist and mediate CML-specific immunity in patients that maintain CCR after IFN withdrawal. We found that PR1-CTL were increased in peripheral blood of 7/7 HLA-A2+ patients during unmaintained CCR from 3 to 88 months after IFN withdrawal, as compared to no detectable PR1-CTL in 2/2 IFN-treated CML patients not in CCR. Unprimed PR1-CTL secreted IFNgamma and were predominantly CD45RA+/-CD28+CCR7+CD57-, consistent with functional naïve and central memory (CM) T cells. Similarly, following stimulation, proliferation occurred predominantly in CM PR1-CTL, consistent with long-term immunity sustained by self-renewing CM T cells. PR1-CTL were functionally anergic in one patient 6 months prior to cytogenetic relapse at 26 months after IFN withdrawal, and in three relapsed patients PR1-CTL were undetectable but re-emerged 3-6 months after starting imatinib.These data support the hypothesis that IFN elicits CML-specific CM CTL that may contribute to continuous CCR after IFN withdrawal and suggest a role for T cell immune therapy with or without tyrosine kinase inhibitors as a strategy to prolong CR in CML

    The Role of Antigen Cross-presentation From Leukemia Blasts on Immunity to the Leukemia-associated Antigen PR1

    Get PDF
    Cross-presentation is an important mechanism by which exogenous tumor antigens are presented to elicit immunity. Since neutrophil elastase (NE) and proteinase-3 (P3) expression is increased in myeloid leukemia, we investigated whether NE and P3 are cross-presented by dendritic cells (DC) and B-cells, and whether the NE and P3 source determines immune outcomes. We show that NE and P3 are elevated in leukemia patient serum and that levels correlate with remission status. We demonstrate cellular uptake of NE and P3 into lysosomes, ubiquitination and proteasome processing for cross-presentation. Using anti-PR1/HLA-A2 monoclonal antibody, we provide direct evidence that B-cells cross-present soluble and leukemia-associated NE and P3, while DCs cross-present only leukemia-associated NE and P3. Cross-presentation occurred at early time points but was not associated with DC or B-cell activation, suggesting that NE and P3 cross-presentation may favor tolerance. Furthermore, we show aberrant subcellular localization of NE and P3 in leukemia blasts to compartments that share common elements of the classical MHC class I antigen-presenting pathway, which may facilitate cross-presentation. Our data demonstrate distinct mechanisms for cross-presentation of soluble and cell-associated NE and P3, which may be valuable in understanding immunity to PR1 in leukemia

    Priorities for synthesis research in ecology and environmental science

    Get PDF
    ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
    corecore