1,520 research outputs found
Laser cooling of electron beams for linear colliders
A novel method of electron beam cooling is considered which can be used for
linear colliders. The electron beam is cooled during collision with focused
powerful laser pulse. With reasonable laser parameters (laser flash energy
about 10 J) one can decrease transverse beam emittances by a factor about 10
per one stage. The ultimate transverse emittances are much below those
achievable by other methods. Beam depolarization during cooling is about 5--15
% for one stage. This method is especially useful for photon colliders and
opens new possibilities for e+e- colliders.Comment: 4 pages, Latex, v2 corresponds to the PRL paper with erratum (in
1998) include
Restriction on the energy and luminosity of e+e- storage rings due to beamstrahlung
The role of beamstrahlung in high-energy e+e- storage-ring colliders (SRCs)
is examined. Particle loss due to the emission of single energetic
beamstrahlung photons is shown to impose a fundamental limit on SRC
luminosities at energies 2E_0 >~ 140 GeV for head-on collisions and 2E_0 >~ 40
GeV for crab-waist collisions. With beamstrahlung taken into account, we
explore the viability of SRCs in the E_0=240-500 GeV range, which is of
interest in the precision study of the Higgs boson. At 2E_0=240 GeV, SRCs are
found to be competitive with linear colliders; however, at 2E_0=400-500 GeV,
the attainable SRC luminosity would be a factor 15-25 smaller than desired.Comment: Latex, 5 pages. v2 differs only by minor changes is abstract and
introduction, one reference is added. v3 corresponds to the paper published
in PR
Thermal conductance of Andreev interferometers
We calculate the thermal conductance of diffusive Andreev
interferometers, which are hybrid loops with one superconducting arm and one
normal-metal arm. The presence of the superconductor suppresses ; however,
unlike a conventional superconductor, does not vanish as the
temperature , but saturates at a finite value that depends on the
resistance of the normal-superconducting interfaces, and their distance from
the path of the temperature gradient. The reduction of is determined
primarily by the suppression of the density of states in the proximity-coupled
normal metal along the path of the temperature gradient. is also a
strongly nonlinear function of the thermal current, as found in recent
experiments.Comment: 5 pages, 4 figure
Interaction corrections: temperature and parallel field dependencies of the Lorentz number in two-dimensional disordered metals
The electron-electron interaction corrections to the transport coefficients
are calculated for a two-dimensional disordered metal in a parallel magnetic
field via the quantum kinetic equation approach. For the thermal transport,
three regimes (diffusive, quasiballistic and truly ballistic) can be identified
as the temperature increases. For the diffusive and quasiballistic regimes, the
Lorentz number dependence on the temperature and on the magnetic field is
studied. The electron-electron interactions induce deviations from the
Wiedemann-Franz law, whose sign depend on the temperature: at low temperatures
the long-range part of the Coulomb interaction gives a positive correction,
while at higher temperature the inelastic collisions dominate the negative
correction. By applying a parallel field, the Lorentz number becomes a
non-monotonic function of field and temperature for all values of the
Fermi-liquid interaction parameter in the diffusive regime, while in the
quasiballistic case this is true only sufficiently far from the Stoner
instability.Comment: 11 pages, 5 figures. Appendix A revised, notes adde
Thermal transport in a granular metal array
We obtain the Kubo formula for the electronic thermal conductivity kappa(T)
of a granular metal array at low temperatures for the Ambegaokar-Eckern-Schoen
(AES) model and study the kinetic and potential contributions in the
diamagnetic (local) and paramagnetic (current-current) terms. For small values
of dimensionless intergrain tunneling conductance, g << 1, we show that
inelastic cotunneling processes contribute to thermal conductivity due to
non-cancellation of the diamagnetic and paramagnetic terms, unlike electrical
conductivity. We find that the electrical conductivity obeys the Arrhenius law,
sigma(T) ~ ge^{-E_c/T}, however kappa(T) decreases only algebraically, kappa(T)
\~ g^2 T^3/E_c^2. At large values of intergrain coupling, g >> 1, we find it
plausible that the Wiedemann-Franz law weakly deviates from the free-electron
theory due to Coulomb effects.Comment: 5 pages RevTeX, to appear in Physical Review Letter
Ultimate parameters of the photon collider at the ILC
At linear colliders, the e+e- luminosity is limited by beam-collision
effects, which determine the required emittances of beams in damping rings
(DRs). While in gamma-gamma collisions at the photon collider, these effects
are absent, and so smaller emittances are desirable. In present damping rings
designs, nominal DR parameters correspond to those required for e+e-
collisions. In this note, I would like to stress once again that as soon as we
plan the photon-collider mode of ILC operation, the damping-ring emittances are
dictated by the photon-collider requirements--namely, they should be as small
as possible. This can be achieved by adding more wigglers to the DRs; the
incremental cost is easily justified by a considerable potential improvement of
the gamma-gamma luminosity. No expert analysis exists as of yet, but it seems
realistic to obtain a factor five increase of the gamma-gamma luminosity
compared to the ``nominal'' DR design.Comment: Talk at LCWS06, Bangalore, India, March 2006, to be published in
Indian Journal of Physics, 5 pp, Latex, 1 .eps figur
Eikonal Evolution and Gluon Radiation
We give a simple quantum mechanical formulation of the eikonal propagation
approximation, which has been heavily used in recent years in problems
involving hadronic interactions at high energy. This provides a unified
framework for several approaches existing in the literature. We illustrate this
scheme by calculating the total, elastic, inelastic and diffractive DIS cross
sections, as well as gluon production in high energy hadronic collisions. From
the q-qbar-g-component of the DIS cross sections, we straightforwardly derive
low x evolution equations for inelastic and diffractive DIS distribution
functions. In all calculations, we provide all order 1/N corrections to the
results existing in the literature.Comment: 40 pages, LaTeX, 3 eps-figures, typos corrected, to be published in
PR
q-Boson approach to multiparticle correlations
An approach is proposed enabling to effectively describe, for relativistic
heavy-ion collisions, the observed deviation from unity of the intercept
\lambda (measured value corresponding to zero relative momentum {\bf p} of two
registered identical pions or kaons) of the two-particle correlation function
C(p,K). The approach uses q-deformed oscillators and the related picture of
ideal gas of q-bosons. In effect, the intercept \lambda is connected with
deformation parameter q. For a fixed value of q, the model predicts specific
dependence of \lambda on pair mean momentum {\bf K} so that, when |{\bf
K}|\gsim 500 - 600 MeV/c for pions or when |{\bf K}|\gsim 700 - 800 MeV/c for
kaons, the intercept \lambda tends to a constant which is less than unity and
determined by q. If q is fixed to be the same for pions and kaons, the
intercepts \lambda_\pi and \lambda_K essentially differ at small mean momenta
{\bf K}, but tend to be equal at {\bf K} large enough (|{\bf K}|\gsim 800MeV/c)
where the effect of resonance decays can be neglected. We argue that it is of
basic interest to check in the experiments on heavy ion collisions: (i) the
exact shape of dependence \lambda = \lambda({\bf K}), and (ii) whether for
|{\bf K}| \gsim 800 MeV/c the resulting \lambda_\pi and \lambda_K indeed
coincide.Comment: 6 pages, revtex, 4 figures, to be published in Mod. Phys. Lett.
Young Measures Generated by Ideal Incompressible Fluid Flows
In their seminal paper "Oscillations and concentrations in weak solutions of
the incompressible fluid equations", R. DiPerna and A. Majda introduced the
notion of measure-valued solution for the incompressible Euler equations in
order to capture complex phenomena present in limits of approximate solutions,
such as persistence of oscillation and development of concentrations.
Furthermore, they gave several explicit examples exhibiting such phenomena. In
this paper we show that any measure-valued solution can be generated by a
sequence of exact weak solutions. In particular this gives rise to a very
large, arguably too large, set of weak solutions of the incompressible Euler
equations.Comment: 35 pages. Final revised version. To appear in Arch. Ration. Mech.
Ana
- …