238 research outputs found

    Statistics of initial density perturbations in heavy ion collisions and their fluid dynamic response

    Full text link
    An interesting opportunity to determine thermodynamic and transport properties in more detail is to identify generic statistical properties of initial density perturbations. Here we study event-by-event fluctuations in terms of correlation functions for two models that can be solved analytically. The first assumes Gaussian fluctuations around a distribution that is fixed by the collision geometry but leads to non-Gaussian features after averaging over the reaction plane orientation at non-zero impact parameter. In this context, we derive a three-parameter extension of the commonly used Bessel-Gaussian event-by-event distribution of harmonic flow coefficients. Secondly, we study a model of N independent point sources for which connected n-point correlation functions of initial perturbations scale like 1/N^(n-1). This scaling is violated for non-central collisions in a way that can be characterized by its impact parameter dependence. We discuss to what extent these are generic properties that can be expected to hold for any model of initial conditions, and how this can improve the fluid dynamical analysis of heavy ion collisions.Comment: 35 pages, 5 figures, published versio

    Characterization of initial fluctuations for the hydrodynamical description of heavy ion collisions

    Full text link
    Event-by-event fluctuations in the initial conditions for a hydrodynamical description of heavy-ion collisions are characterized. We propose a Bessel-Fourier decomposition with respect to the azimuthal angle, the radius in the transverse plane and rapidity. This allows for a complete characterization of fluctuations in all hydrodynamical fields including energy density, pressure, fluid velocity, shear stress and bulk viscous pressure. It has the advantage that fluctuations can be ordered with respect to their wave length and that they can be propagated mode-by-mode within the hydrodynamical formalism. Event ensembles can then be characterized in terms of a functional probability distribution. For the event ensemble of a Monte Carlo Glauber model, we provide evidence that the latter is close to Gaussian form, thus allowing for a particularly simple characterization of the event distribution.Comment: 40 pages, 16 figure

    Mode-by-mode fluid dynamics for relativistic heavy ion collisions

    Get PDF
    We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be build up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.Comment: 6 pages, 5 figures, published versio

    Backreaction effects on the matter side of Einstein's field equations

    Full text link
    Recently, we have derived a novel and compact expression for how perturbations in the matter fields of the cosmological fluid can lead to deviations from the standard Friedmann equations. Remarkably, the dissipative damping of velocity perturbations by bulk and shear viscosity in the dark sector can modify the expansion history of the universe on arbitrarily large scales. In universes in which this effect is sufficiently sizeable, it could account for the acceleration of the cosmological expansion. But even if dark matter should be less viscous and if the effect would be correspondingly smaller, it may have observable consequences in the era of precision cosmology. Here, we review the origin of this backreaction effect and possibilities to constrain it further.Comment: 4 pages, to be published in the Moriond Proceedings 201

    Nonlinear evolution of density and flow perturbations on a Bjorken background

    Full text link
    Density perturbations and their dynamic evolution from early to late times can be used for an improved understanding of interesting physical phenomena both in cosmology and in the context of heavy-ion collisions. We discuss the spectrum and bispectrum of these perturbations around a longitudinally expanding fireball after a heavy-ion collision. The time-evolution equations couple the spectrum and bispectrum to each other, as well as to higher-order correlation functions through nonlinear terms. A non-trivial bispectrum is thus always generated, even if absent initially. For initial conditions corresponding to a model of independent sources, we discuss the linear and nonlinear evolution is detail. We show that, if the initial conditions are sufficiently smooth for fluid dynamics to be applicable, the nonlinear effects are relatively small.Comment: 32 pages, 17 figures, published versio

    Large scale structure from viscous dark matter

    Full text link
    Cosmological perturbations of sufficiently long wavelength admit a fluid dynamic description. We consider modes with wavevectors below a scale kmk_m for which the dynamics is only mildly non-linear. The leading effect of modes above that scale can be accounted for by effective non-equilibrium viscosity and pressure terms. For mildly non-linear scales, these mainly arise from momentum transport within the ideal and cold but inhomogeneous fluid, while momentum transport due to more microscopic degrees of freedom is suppressed. As a consequence, concrete expressions with no free parameters, except the matching scale kmk_m, can be derived from matching evolution equations to standard cosmological perturbation theory. Two-loop calculations of the matter power spectrum in the viscous theory lead to excellent agreement with NN-body simulations up to scales k=0.2 h/k=0.2 \, h/Mpc. The convergence properties in the ultraviolet are better than for standard perturbation theory and the results are robust with respect to variations of the matching scale.Comment: 30 pages, 7 figure

    How (non-) linear is the hydrodynamics of heavy ion collisions?

    Full text link
    We provide evidence from full numerical solutions that the hydrodynamical evolution of initial density fluctuations in heavy ion collisions can be understood order-by-order in a perturbative series in deviations from a smooth and azimuthally symmetric background solution. To leading linear order, modes with different azimuthal wave numbers do not mix. Quadratic and higher order corrections are small and can be understood as overtones with corresponding wave numbers.Comment: 8 pages, 4 figure

    A perturbative approach to the hydrodynamics of heavy ion collisions

    Full text link
    Initial fluctuations in hydrodynamic fields such as energy density or flow velocity give access to understanding initial state and equilibration physics as well as thermodynamic and transport properties. We provide evidence that the fluid dynamic propagation of fluctuations of realistic size can be based on a background-fluctuation splitting and a systematic perturbative expansion in the fluctuating fields. Initial conditions are characterized by a Bessel-Fourier expansion for single events, event-by-event correlations and probability distributions. The evolution equations can be solved order-by-order in the expansion which allows to study the fluid dynamical propagation of single modes, the study of interaction effects between modes, the determination of the associated particle spectra and the generalization of the whole program to event-by-event correlations and distributions.Comment: poceedings of the XXIV Quark Matter conference (2014

    Backreaction from inhomogeneous matter fields during large-scale structure formation

    Full text link
    We study how inhomogeneities of the cosmological fluid fields backreact on the homogeneous part of energy density and how they modify the Friedmann equations. In general, backreaction requires to go beyond the pressureless ideal fluid approximation, and this can lead to a reduced growth of cosmological large scale structure. Since observational evidence favours evolution close to the standard growing mode in the linear regime, we focus on two-component fluids in which the non-ideal fluid is gravitationally coupled to cold dark matter and in which a standard growing mode persists. This is realized, e.g. for a baryonic fluid coupled to cold dark matter. We calculate the backreaction for this case and for a wide range of other two-fluid models. Here the effect is either suppressed because the non-ideal matter properties are numerically too small, or because they lead to a too stringent UV cut-off of the integral over the power spectrum that determines backreaction. We discuss then matter field backreaction from a broader perspective and generalize the formalism such that also far-from-equilibrium scenarios relevant to late cosmological times and non-linear scales can be addressed in the future.Comment: 11 pages, 3 figure
    • …
    corecore