69 research outputs found

    Studying Underlying Characteristics of Computing and Engineering Student Success (SUCCESS) Survey

    Get PDF
    This survey was developed to measure underlying factors that may influence student success including personality, community, grit, thriving, identity, mindset, motivation, perceptions of faculty caring, stress, gratitude, self-control, mindfulness, and belongingness. We measure these underlying factors because each engineering and computing student admitted to a university has clear potential for academic and personal success in their undergraduate curriculum based upon admissions criteria. However, while some thrive academically, others struggle in a variety of ways. In our NSF-funded project (1626287/1626185/1626148), we posit that some collection of characteristics—apparently not visible on their admission applications and perhaps not related to their talent or intelligence—is an important piece of the student performance puzzle. We developed a survey to measure various non-cognitive and affective factors that we believe are important for student achievement, academically, personally, and professionally. These non-cognitive and affective factors are representative of multifaceted aspects of undergraduate student success in prior literature. Each of the constructs we chose had validity evidence from prior studies, some within an engineering population. An exploratory and confirmatory factor analysis have been conducted on the original list of items to develop this finalized survey (Scheidt et al., 2018). The survey takes approximately 30 minutes for students to complete. Scheidt, M., & Godwin, A., & Senkpeil, R. R., & Ge, J. S., & Chen, J., & Self, B. P., & Widmann, J. M., & Berger, E. J. (2018, June), Validity Evidence for the SUCCESS Survey: Measuring Non-Cognitive and Affective Traits of Engineering and Computing Students. Paper presented at 2018 ASEE Annual Conference & Exposition, Salt Lake City, Utah. https://peer.asee.org/3122

    Origins of the Highly Ionized Gas along the Line of Sight towards HD 116852

    Get PDF
    We present Hubble Space Telescope Imaging Spectrograph (HST/STIS) and Far Ultraviolet Spectroscopic Explorer (FUSE) observations of high ion interstellar absorption along the sight line to HD 116852. At a distance of 4.8 kpc, HD 116852 is an O9 III star lying in the low Galactic halo, -1.3 kpc from the plane of the Galaxy in the direction l = 304.9, b = -16.1. The STIS E140H grating observations provide high-resolution (FWHM = 2.7 km/s) spectra of the resonance doublets of Si IV, C IV, and N V. These data are complemented by medium-resolution (FWHM = 20 km/s) FUSE spectra of O VI. We find evidence for three distinct types of highly ionized gas present in the data. First, two narrow absorption components are resolved in the Si IV and C IV profiles, at approximate LSR velocities of -36 and -10 km/s. These narrow components appear to be produced in gas associated with the Norma and Sagittarius spiral arms, at approximate z-distances of -1.0 and -0.5 kpc, respectively. Second, we detect an intermediate-width component in C IV and Si IV, at 17 km/s, which we propose could arise at the conductive interface at the boundary between a low column density neutral or weakly ionized cloud and the surrounding hot medium. Finally, a broad collisionally ionized component of gas responsible for producing the smooth N V and O VI profiles is observed; such absorption is also present to a lesser degree in the profiles of Si IV and C IV. The broad O VI absorption is observed at a velocity displaced from the broad C IV component by almost 20 km/s, an amount large enough to suggest that the two ions may not co-exist in the same physical location.Comment: 39 pages, 6 figures; accepted for publication in January 10, 2003 edition of The Astrophysical Journa

    Rib Cage Deformities Alter Respiratory Muscle Action and Chest Wall Function in Patients with Severe Osteogenesis Imperfecta

    Get PDF
    Osteogenesis imperfecta (OI) is an inherited connective tissue disorder characterized by bone fragility, multiple fractures and significant chest wall deformities. Cardiopulmonary insufficiency is the leading cause of death in these patients.Seven patients with severe OI type III, 15 with moderate OI type IV and 26 healthy subjects were studied. In addition to standard spirometry, rib cage geometry, breathing pattern and regional chest wall volume changes at rest in seated and supine position were assessed by opto-electronic plethysmography to investigate if structural modifications of the rib cage in OI have consequences on ventilatory pattern. One-way or two-way analysis of variance was performed to compare the results between the three groups and the two postures. compared to predicted values, on condition that updated reference equations are considered. In both positions, ventilation was lower in OI patients than control because of lower tidal volume (p<0.01). In contrast to OI type IV patients, whose chest wall geometry and function was normal, OI type III patients were characterized by reduced (p<0.01) angle at the sternum (pectus carinatum), paradoxical inspiratory inward motion of the pulmonary rib cage, significant thoraco-abdominal asynchronies and rib cage distortions in supine position (p<0.001).In conclusion, the restrictive respiratory pattern of Osteogenesis Imperfecta is closely related to the severity of the disease and to the sternal deformities. Pectus carinatum characterizes OI type III patients and alters respiratory muscles coordination, leading to chest wall and rib cage distortions and an inefficient ventilator pattern. OI type IV is characterized by lower alterations in the respiratory function. These findings suggest that functional assessment and treatment of OI should be differentiated in these two forms of the disease

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI

    Full text link
    The GRAVITY instrument has been revolutionary for near-infrared interferometry by pushing sensitivity and precision to previously unknown limits. With the upgrade of GRAVITY and the Very Large Telescope Interferometer (VLTI) in GRAVITY+, these limits will be pushed even further, with vastly improved sky coverage, as well as faint-science and high-contrast capabilities. This upgrade includes the implementation of wide-field off-axis fringe-tracking, new adaptive optics systems on all Unit Telescopes, and laser guide stars in an upgraded facility. GRAVITY+ will open up the sky to the measurement of black hole masses across cosmic time in hundreds of active galactic nuclei, use the faint stars in the Galactic centre to probe General Relativity, and enable the characterisation of dozens of young exoplanets to study their formation, bearing the promise of another scientific revolution to come at the VLTI.Comment: Published in the ESO Messenge
    • …
    corecore