99 research outputs found

    Muscle Adaptations Following Short-Duration Bed Rest with Integrated Resistance, Interval, and Aerobic Exercise

    Get PDF
    Unloading of the musculoskeletal system during space flight results in deconditioning that may impair mission-related task performance in astronauts. Exercise countermeasures have been frequently tested during bed rest (BR) and limb suspension; however, high-intensity, short-duration exercise prescriptions have not been fully explored. PURPOSE: To determine if a high intensity resistance, interval, and aerobic exercise program could protect against muscle atrophy and dysfunction when performed during short duration BR. METHODS: Nine subjects (1 female, 8 male) performed a combination of supine exercises during 2 weeks of horizontal BR. Resistance exercise (3 d / wk) consisted of squat, leg press, hamstring curl, and heel raise exercises (3 sets, 12 repetitions). Aerobic (6 d / wk) sessions alternated continuous (75% VO2 peak) and interval exercise (30 s, 2 min, and 4 min) and were completed on a supine cycle ergometer and vertical treadmill, respectively. Muscle volumes of the upper leg were calculated pre, mid, and post-BR using magnetic resonance imaging. Maximal isometric force (MIF), rate of force development (RFD), and peak power of the lower body extensors were measured twice before BR (averaged to represent pre) and once post BR. ANOVA with repeated measures and a priori planned contrasts were used to test for differences. RESULTS: There were no changes to quadriceps, hamstring, and adductor muscle volumes at mid and post BR time points compared to pre BR (Table 1). Peak power increased significantly from 1614 +/- 372 W to 1739 +/- 359 W post BR (+7.7%, p = 0.035). Neither MIF (pre: 1676 +/- 320 N vs. post: 1711 +/- 250 N, +2.1%, p = 0.333) nor RFD (pre: 7534 +/- 1265 N/ms vs. post: 6951 +/- 1241 N/ms, -7.7%, p = 0.136) were significantly impaired post BR

    Motivational Interviewing Versus Cognitive Behavioral Group Therapy in the Treatment of Problem and Pathological Gambling: A Randomized Controlled Trial

    Get PDF
    Pathological gambling is a widespread problem with major implications for society and the individual. There are effective treatments, but little is known about the relative effectiveness of different treatments. The aim of this study was to test the effectiveness of motivational interviewing, cognitive behavioral group therapy, and a no-treatment control (wait-list) in the treatment of pathological gambling. This was done in a randomized controlled trial at an outpatient dependency clinic at Karolinska Institute (Stockholm, Sweden). A total of 150 primarily self-recruited patients with current gambling problems or pathological gambling according to an NORC DSM-IV screen for gambling problems were randomized to four individual sessions of motivational interviewing (MI), eight sessions of cognitive behavioral group therapy (CBGT), or a no-treatment wait-list control. Gambling-related measures derived from timeline follow-back as well as general levels of anxiety and depression were administered at baseline, termination, and 6 and 12 months posttermination. Treatment showed superiority in some areas over the no-treatment control in the short term, including the primary outcome measure. No differences were found between MI and CBGT at any point in time. Instead, both MI and CBGT produced significant within-group decreases on most outcome measures up to the 12-month follow-up. Both forms of intervention are promising treatments, but there is room for improvement in terms of both outcome and compliance

    Balancing Detection and Eradication for Control of Epidemics: Sudden Oak Death in Mixed-Species Stands

    Get PDF
    Culling of infected individuals is a widely used measure for the control of several plant and animal pathogens but culling first requires detection of often cryptically-infected hosts. In this paper, we address the problem of how to allocate resources between detection and culling when the budget for disease management is limited. The results are generic but we motivate the problem for the control of a botanical epidemic in a natural ecosystem: sudden oak death in mixed evergreen forests in coastal California, in which species composition is generally dominated by a spreader species (bay laurel) and a second host species (coast live oak) that is an epidemiological dead-end in that it does not transmit infection but which is frequently a target for preservation. Using a combination of an epidemiological model for two host species with a common pathogen together with optimal control theory we address the problem of how to balance the allocation of resources for detection and epidemic control in order to preserve both host species in the ecosystem. Contrary to simple expectations our results show that an intermediate level of detection is optimal. Low levels of detection, characteristic of low effort expended on searching and detection of diseased trees, and high detection levels, exemplified by the deployment of large amounts of resources to identify diseased trees, fail to bring the epidemic under control. Importantly, we show that a slight change in the balance between the resources allocated to detection and those allocated to control may lead to drastic inefficiencies in control strategies. The results hold when quarantine is introduced to reduce the ingress of infected material into the region of interest

    An optimal control theory approach to non-pharmaceutical interventions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-pharmaceutical interventions (NPI) are the first line of defense against pandemic influenza. These interventions dampen virus spread by reducing contact between infected and susceptible persons. Because they curtail essential societal activities, they must be applied judiciously. Optimal control theory is an approach for modeling and balancing competing objectives such as epidemic spread and NPI cost.</p> <p>Methods</p> <p>We apply optimal control on an epidemiologic compartmental model to develop triggers for NPI implementation. The objective is to minimize expected person-days lost from influenza related deaths and NPI implementations for the model. We perform a multivariate sensitivity analysis based on Latin Hypercube Sampling to study the effects of input parameters on the optimal control policy. Additional studies investigated the effects of departures from the modeling assumptions, including exponential terminal time and linear NPI implementation cost.</p> <p>Results</p> <p>An optimal policy is derived for the control model using a linear NPI implementation cost. Linear cost leads to a "bang-bang" policy in which NPIs are applied at maximum strength when certain state criteria are met. Multivariate sensitivity analyses are presented which indicate that NPI cost, death rate, and recovery rate are influential in determining the policy structure. Further death rate, basic reproductive number and recovery rate are the most influential in determining the expected cumulative death. When applying the NPI policy, the cumulative deaths under exponential and gamma terminal times are close, which implies that the outcome of applying the "bang-bang" policy is insensitive to the exponential assumption. Quadratic cost leads to a multi-level policy in which NPIs are applied at varying strength levels, again based on certain state criteria. Results indicate that linear cost leads to more costly implementation resulting in fewer deaths.</p> <p>Conclusions</p> <p>The application of optimal control theory can provide valuable insight to developing effective control strategies for pandemic. Our findings highlight the importance of establishing a sensitive and timely surveillance system for pandemic preparedness.</p

    "I am becoming more and more like my eldest brother!": the relationship between older siblings, adolescent gambling severity, and the attenuating role of parents in a large-scale nationally representative survey study

    Get PDF
    The present study examined the association between having older siblings who gamble and adolescent at-risk/problem gambling and how parents (i.e., parental knowledge of their whereabouts) and peers might moderate such effects. Data were drawn from the ESPAD®Italia2012 survey (European School Survey Project on Alcohol and Other Drugs) comprising a nationally representative Italian sample of adolescents. The analysis was carried out on a subsample of 10,063 Italian students aged 15–19 years (average age = 17.10; 55 % girls) who had at least one older sibling and who had gambled at some point in their lives. Respondents’ problem gambling severity, older gambler sibling, gambler peers, parental knowledge, and socio-demographic characteristics were individually assessed. Multinomial logistic regression analyses including two- and three-way interactions were conducted. The odds of being an at-risk/problem gambler were higher among high school students with older siblings that gambled and those with peers who gambled. Higher parental knowledge (of who the adolescent was with and where they were in their leisure time) was associated with lower rates of at-risk/problem gambling. There was also an interaction between gamblers with older siblings and parental knowledge. The combination of having siblings who gambled and a greater level of parental knowledge was associated with lower levels of problem gambling. The present study confirmed the occurrence of social risk processes (older siblings and peers who gambled) and demonstrated that gambling among older siblings and peers represents an important contextual factor for increased at-risk/problem gambling. However, parental knowledge appears to be sufficient to counterbalance the influence of older siblings

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    Get PDF
    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance
    corecore