1,444 research outputs found
Cosmic Needles versus Cosmic Microwave Background Radiation
It has been suggested by a number of authors that the 2.7K cosmic microwave
background (CMB) radiation might have arisen from the radiation from Population
III objects thermalized by conducting cosmic graphite/iron needle-shaped dust.
Due to lack of an accurate solution to the absorption properties of exceedingly
elongated grains, in existing literature which studies the CMB thermalizing
process they are generally modelled as (1) needle-like spheroids in terms of
the Rayleigh approximation; (2) infinite cylinders; and (3) the antenna theory.
We show here that the Rayleigh approximation is not valid since the Rayleigh
criterion is not satisfied for highly conducting needles. We also show that the
available intergalactic iron dust, if modelled as infinite cylinders, is not
sufficient to supply the required opacity at long wavelengths to obtain the
observed isotropy and Planckian nature of the CMB. If appealing to the antenna
theory, conducting iron needles with exceedingly large elongations (10^4)
appear able to provide sufficient opacity to thermalize the CMB within the iron
density limit. But the applicability of the antenna theory to exceedingly thin
needles of nanometer/micrometer in thickness needs to be justified.Comment: 13 pages, 4 figures; submitted to ApJ
Analytical Approach for the Determination of the Luminosity Distance in a Flat Universe with Dark Energy
Recent cosmological observations indicate that the present universe is flat
and dark energy dominated. In such a universe, the calculation of the
luminosity distance, d_L, involve repeated numerical calculations. In this
paper, it is shown that a quite efficient approximate analytical expression,
having very small uncertainties, can be obtained for d_L. The analytical
calculation is shown to be exceedingly efficient, as compared to the
traditional numerical methods and is potentially useful for Monte-Carlo
simulations involving luminosity distances.Comment: 3 pages, 4 figures, Accepted for publication in MNRA
The Detection of Cold Dust in Cas A: Evidence for the Formation of Metallic Needles in the Ejecta
Recently, Dunne et al. (2003) obtained 450 and 850 micron SCUBA images of
CasA, and reported the detection of 2-4 M_sun of cold, 18K, dust in the
remnant. Here we show that their interpretation of the observations faces
serious difficulties. Their inferred dust mass is larger than the mass of
refractory material in the ejecta of a 10 to 30 M_sun star. The cold dust model
faces even more difficulties if the 170 micron observations of the remnant are
included in the analysis, decreasing the cold dust temperature to ~ 8K, and
increasing its mass to > 20 M_sun. We offer here a more plausible
interpretation of their observation, in which the cold dust emission is
generated by conducting needles with properties that are completely determined
by the combined submillimeter and X-ray observations of the remnant. The
needles consist of metallic whiskers with <1% of embedded impurities that may
have condensed out of blobs of material that were expelled at high velocities
from the inner metal-rich layers of the star in an asymmetric explosion. The
needles are collisionally heated by the shocked gas to a temperature of 8K.
Taking the destruction of needles into account, a dust mass of only 1E-4 to
1E-3M_sun is needed to account for the observed SCUBA emission. Aligned in the
magnetic field, needles may give rise to observable polarized emission. The
detection of submillimeter polarization will therefore offer definitive proof
for a needle origin for the cold dust emission. Supernovae may still be proven
to be important sources of interstellar dust, but the evidence is still
inconclusive.Comment: 18 pages including 4 figures. Accepted for publication in the ApJ.
Missing reference adde
Evolution of primordial planets in relation to the cosmological origin of life
We explore the conditions prevailing in primordial planets in the framework
of the HGD cosmologies as discussed by Gibson and Schild. The initial stages of
condensation of planet-mass H-4He gas clouds in trillion-planet clumps is set
at 300,000 yr (0.3My) following the onset of plasma instabilities when ambient
temperatures were >1000K. Eventual collapse of the planet-cloud into a solid
structure takes place against the background of an expanding universe with
declining ambient temperatures. Stars form from planet mergers within the
clumps and die by supernovae on overeating of planets. For planets produced by
stars, isothermal free fall collapse occurs initially via quasi equilibrium
polytropes until opacity sets in due to molecule and dust formation. The
contracting cooling cloud is a venue for molecule formation and the sequential
condensation of solid particles, starting from mineral grains at high
temperatures to ice particles at lower temperatures, water-ice becomes
thermodynamically stable between 7 and 15 My after the initial onset of
collapse, and contraction to form a solid icy core begins shortly thereafter.
Primordial-clump-planets are separated by ~ 1000 AU, reflecting the high
density of the universe at 30,000 yr. Exchanges of materials, organic molecules
and evolving templates readily occur, providing optimal conditions for an
initial origin of life in hot primordial gas planet water cores when adequately
fertilized by stardust. The condensation of solid molecular hydrogen as an
extended outer crust takes place much later in the collapse history of the
protoplanet. When the object has shrunk to several times the radius of Jupiter,
the hydrogen partial pressure exceeds the saturation vapour pressure of solid
hydrogen at the ambient temperature and condensation occurs.Comment: 14 pages 7 figures SPIE Conference 7819 Instruments, Methods, and
Missions for Astrobiology XIII Proceedings, Aug 3-5, 2010, San Diego, Ed.
Richard B. Hoove
- …