709 research outputs found

    Galactic Escape Speeds in Mirror and Cold Dark Matter Models

    Full text link
    The mirror dark matter (MDM) model of Berezhiani et al. has been shown to reproduce observed galactic rotational curves for a variety of spiral galaxies, and has been presented as an alternative to cold dark matter (CDM) models. We investigate possible additional tests involving the properties of stellar orbits, which may be used to discriminate between the two models. We demonstrate that in MDM and CDM models fitted equally well to a galactic rotational curve, one generally expects predictable differences in escape speeds from the disc. The recent radial velocity (RAVE) survey of the Milky Way has pinned down the escape speed from the solar neighbourhood to vesc=544−46+64v_{esc}=544^{+64}_{-46} km s−1^{-1}, placing an additional constraint on dark matter models. We have constructed an MDM model for the Milky Way based on its rotational curve, and find an escape speed that is just consistent with the observed value given the current errors, which lends credence to the viability of the MDM model. The Gaia-ESO spectroscopic survey is expected to lead to an even more precise estimate of the escape speed that will further constrain dark matter models. However, the largest differences in stellar escape speeds between both models are predicted for dark matter dominated dwarf galaxies such as DDO 154, and kinematical studies of such galaxies could prove key in establishing, or abolishing, the validity of the MDM model.Comment: Accepted for publication in the European Physical Journal

    WD1953-011 - a magnetic white dwarf with peculiar field structure

    Get PDF
    We present H-alpha spectra of the magnetic white dwarf star WD1953-011 which confirm the presence of the broad Zeeman components corresponding to a field strength of about 500kG found by Maxted & Marsh (1999). We also find that the line profile is variable over a timescale of a day or less. The core of the H-alpha line also shows a narrow Zeeman triplet corresponding to a field strength of of about 100kG which appears to be almost constant in shape. These observations suggest that the magnetic field on WD1953-011 has a complex structure and that the star has a rotational period of hours or days which causes the observed variability of the spectra. We argue that neither an offset dipole model nor a double-dipole model are sufficient to explain our observations. Instead, we propose a two component model consisting of a high field region of magnetic field strength of about 500kG covering about 10% of the surface area of the star superimposed on an underlying dipolar field of mean field strength of about 70kG. Radial velocity measurements of the narrow Zeeman triplet show that the radial velocity is constant to within a few km/s so this star is unlikely to be a close binary.Comment: Accpeted for publication in MNRAS. 4 pages, 2 figure

    The effects of tidally induced disc structure on white dwarf accretion in intermediate polars

    Full text link
    We investigate the effects of tidally induced asymmetric disc structure on accretion onto the white dwarf in intermediate polars. Using numerical simulation, we show that it is possible for tidally induced spiral waves to propagate sufficiently far into the disc of an intermediate polar that accretion onto the central white dwarf could be modulated as a result. We suggest that accretion from the resulting asymmetric inner disc may contribute to the observed X-ray and optical periodicities in the light curves of these systems. In contrast to the stream-fed accretion model for these periodicities, the tidal picture predicts that modulation can exist even for systems with weaker magnetic fields where the magnetospheric radius is smaller than the radius of periastron of the mass transfer stream. We also predict that additional periodic components should exist in the emission from low mass ratio intermediate polars displaying superhumps.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    The True Incidence of Magnetism among Field White Dwarfs

    Get PDF
    We study the incidence of magnetism in white dwarfs from three large and well-observed samples of hot, cool, and nearby white dwarfs in order to test whether the fraction of magnetic degenerates is biased, and whether it varies with effective temperature, cooling age, or distance. The magnetic fraction is considerably higher for the cool sample of Bergeron, Ruiz, and Leggett, and the Holberg, Oswalt, and Sion sample of local white dwarfs that it is for the generally-hotter white dwarfs of the Palomar Green Survey. We show that the mean mass of magnetic white dwarfs in this survey is 0.93 solar masses or more, so there may be a strong bias against their selection in the magnitude-limited Palomar Green Survey. We argue that this bias is not as important in the samples of cool and nearby white dwarfs. However, this bias may not account for all of the difference in the magnetic fractions of these samples. It is not clear that the magnetic white dwarfs in the cool and local samples are drawn from the same population as the hotter PG stars. In particular, two or threee of the cool sample are low-mass white dwarfs in unresolved binary systems. Moreover, there is a suggestion from the local sample that the fractional incidence may increase with decreasing temperature, luminosity, and/or cooling age. Overall, the true incidence of magnetism at the level of 2 megagauss or greater is at least 10%, and could be higher. Limited studies capable of detecting lower field strengths down to 10 kilogauss suggest by implication that the total fraction may be substantially higher than 10%.Comment: 16 pages, 2 figures, Astronomical Journal in press -- Jan 2003 issu
    • 

    corecore