8 research outputs found

    Active control of smart fin model for aircraft buffeting load alleviation applications

    No full text
    Following the program to test a hybrid actuation system for high-agility aircraft buffeting load alleviation on the full-scale F/A-18 vertical fin structure, an investigation has been performed to understand the aerodynamic effects of high-speed vortical flows on the dynamic characteristics of vertical fin structures. Extensive wind-tunnel tests have been conducted on a scaled model fin integrated with piezoelectric actuators and accelerometers to measure the afttip vibration responses under various freestream and vortical airflow conditions. Test results demonstrated that the airflow induced considerable damping to the fin structure, which generally increased with airflow speed as well as the vertical fin angle of attack relative to the airflow direction. Moreover, it was observed that at the angle of attack of 10 deg, the high-speed airflow introduced large deflection to the smart fin structure and caused significant frequency shift to the vibration modes due to nonlinear geometrical coupling of bending and torsional modes. These aerodynamic effects may adversely affect the performance and robustness of the closed-loop control laws developed based on vertical fin dynamic model identified without considering the varying aerodynamic effects. To explore this problem, the structured singular values synthesis technique was adopted to develop robust control law using smart fin model identified without aerodynamic excitations, and the aerodynamic effects on the fin structure were assumed as smart fin parametric and dynamic uncertainties. The effectiveness and robust performance of the control law was demonstrated through extensive closed-loop wind-tunnel tests using various airflow conditions. This provided a verified control law design strategy for future flight tests of the full-scale aircraft buffeting load alleviation system.NRC publication: Ye

    Smart spring: A novel adaptive impedance control approach for active vibration suppression applications

    No full text
    Most active vibration suppression approaches have attempted to suppress structural vibration by incorporating active material actuators, such as piezoceramic, within the structure to act directly against vibratory loads. These approaches require the piezoceramic actuators to generate significant force and deflection simultaneously to effectively suppress vibration. Unfortunately, successful implementation of these approaches has been hindered by the limited displacement capabilities of piezoceramic actuators. The Smart Spring concept is an unique approach to actively control combinations of dynamic impedance characteristics of a structure, such as the stiffness, damping, and effective mass to suppress vibration in an indirect manner. The piezoceramic actuators employed in the Smart Spring concept are not used to directly counteract excitation loads but rather adaptively vary the eff

    Sensitivity of air-coupled ultrasound and eddy current sensors to bearing fault detection

    No full text
    For decades, vibration and oil analysis have usually been used to detect early bearing faults and track their progression over time. Progress has been seen in condition monitoring through vibration analysis of rolling element bearings using improved sensors and advanced signal processing techniques. In this paper, the authors investigate the use of air-coupled ultrasound and eddy current sensors as diagnostic tools for the detection of bearing faults. A series of experiments was carried out in a laboratory environment: localized defects with different s
    corecore