3 research outputs found

    The impact of small movements with dual lumen cannulae during venovenous extracorporeal membrane oxygenation: A computational fluid dynamics analysis

    No full text
    Venovenous Extracorporeal Membrane Oxygenation (VV ECMO) provides respiratory support to patients with severe lung disease failing conventional medical therapy. An essential component of the ECMO circuit are the cannulas, which drain and return blood into the body. Despite being anchored to the patient to prevent accidental removal, minor cannula movements are common during ECMO. The clinical and haemodynamic consequences of these small movements are currently unclear. This study investigated the risk of thrombosis and recirculation caused by small movements of a dual lumen cannula (DLC) in an adult using computational fluid dynamics. Methods: The 3D model of an AVALON Elite DLC (27 Fr) and a patient-specific vena cava and right atrium were generated for an adult patient on ECMO. The baseline cannula position was generated where the return jet enters the tricuspid valve. Alternative cannula positions were obtained by shifting the cannula 5 and 15 mm towards inferior (IVC) and superior (SVC) vena cava, respectively. ECMO settings of 4 L/min blood flow and pulsatile flow at SVC and IVC were applied. Recirculation was defined as a scalar value indicating the infused oxygenated blood inside the drainage lumen, while thrombosis risk was evaluated by shear stress, stagnation volume, washout, and turbulent kinetic energy. Results: Recirculation for all models was less than 3.1 %. DLC movements between -5 to 15 mm increased shear stress and turbulence kinetic energy up to 24.7 % and 11.8 %, respectively, compared to the baseline cannula position leading to a higher predicted thrombosis risk. All models obtained a complete washout after nine seconds except for when the cannula migrated 15 mm into the SVC, indicating persisting stasis and circulating zones. Conclusion: In conclusion, small DLC movements were not associated with an increased risk of recirculation. However, they may increase the risk of thrombosis due to increased shear rate, turbulence, and slower washout of blood. Developing effective cannula securement devices may reduce this risk.</p

    Hemodynamics of small arterial return cannulae for venoarterial extracorporeal membrane oxygenation

    No full text
    Background: Venoarterial extracorporeal membrane oxygenation (ECMO) provides mechanical support for critically ill patients with cardiogenic shock. Typically, the size of the arterial return cannula is chosen to maximize flow. However, smaller arterial cannulae may reduce cannula-related complications and be easier to insert. This in vitro study quantified the hemodynamic effect of different arterial return cannula sizes in a simulated acute heart failure patient. Methods: Baseline support levels were simulated with a 17 Fr arterial cannula in an ECMO circuit attached to a cardiovascular simulator with targeted partial (2.0 L/min ECMO flow, 60–65 mm Hg mean aortic pressure—MAP) and targeted full ECMO support (3.5 L/min ECMO flow and 70–75 mm Hg MAP). Return cannula size was varied (13–21 Fr), and hemodynamics were recorded while keeping ECMO pump speed constant and adjusting pump speed to restore desired support levels. Results: Minimal differences in hemodynamics were found between cannula sizes in partial support mode. A maximum pump speed change of +600 rpm was required to reach the support target, and arterial cannula inlet pressure varied from 79 (21 Fr) to 224 mm Hg (13 Fr). The 15 Fr arterial cannula could provide the target full ECMO support at the targeted hemodynamics; however, the 13 Fr cannula could not due to the high resistance associated with the small diameter. Conclusions: A 15 Fr arterial return cannula provided targeted partial and full ECMO support to a simulated acute heart failure patient. Balancing reduced cannula size and ECMO support level may improve patient outcomes by reducing cannula-related adverse events.</p

    Flow capabilities of arterial and drainage cannulae during venoarterial extracorporeal membrane oxygenation: A simulation model

    No full text
    Background: Large cannulae can increase cannula-related complications during venoarterial extracorporeal membrane oxygenation (VA ECMO). Conversely, the ability for small cannulae to provide adequate support is poorly understood. Therefore, we aimed to evaluate a range of cannula sizes and VA ECMO flow rates in a simulated patient under various disease states. Methods: Arterial cannulae sizes between 13 and 21 Fr and drainage cannula sizes between 21 and 25 Fr were tested in a VA ECMO circuit connected to a mock circulation loop simulating a patient with severe left ventricular failure. Systemic and pulmonary hypertension, physiologically normal, and hypotension were simulated by varying systemic and pulmonary vascular resistances (SVR and PVR, respectively). All cannula combinations were evaluated against all combinations of SVR, PVR, and VA ECMO flow rates. Results: A 15 Fr arterial cannula combined with a 21 Fr drainage cannula could provide >4 L/min of total flow and a mean arterial pressure of 81.1 mmHg. Changes in SVR produced marked changes to all measured parameters, while changes to PVR had minimal effect. Larger drainage cannulae only increased maximum circuit flow rates when combined with larger arterial cannulae. Conclusion: Smaller cannulae and lower flow rates could sufficiently support the simulated patient under various disease states. We found arterial cannula size and SVR to be key factors in determining the flow-delivering capabilities for any given VA ECMO circuit. Overall, our results challenge the notion that larger cannulae and high flows must be used to achieve adequate ECMO support.</p
    corecore