8 research outputs found

    脳微小出血患者における三次元エコープラナー法を用いた二分間撮影定量的磁化率マッピングの正確性、信頼性、検出能

    Get PDF
    京都大学新制・課程博士博士(医学)甲第24489号医博第4931号新制||医||1063(附属図書館)京都大学大学院医学研究科医学専攻(主査)教授 髙橋 良輔, 教授 永井 洋士, 教授 森田 智視学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDFA

    Two-Minute Quantitative Susceptibility Mapping From Three-Dimensional Echo-Planar Imaging: Accuracy, Reliability, and Detection Performance in Patients With Cerebral Microbleeds

    Get PDF
    Objectives: The aim of this study was to assess the accuracy, reliability, and cerebral microbleed (CMB) detection performance of 2-minute quantitative susceptibility mapping (QSM) from 3-dimensional echo-planar imaging (3D-EPI). Materials and Methods: Gadolinium phantom study was conducted using 3D-EPI, single–echo time (TE), and multi-TE gradient-recalled echo (GRE) sequences on two 3-T magnetic resonance (MR) scanners to assess the accuracy between measured and theoretical susceptibility values. The institutional review board approved this prospective study, and 40 healthy volunteers were enrolled with written consent between April 2018 and October 2019. Each underwent 3D-EPI, single-TE, and multi-TE GRE sequences consecutively on one 3-T MR scanner, and QSMs were calculated to assess the reliability of 3D-EPI QSM. Intraclass correlation coefficient (ICC), linear regression, and Bland-Altman plots were calculated. Patients with CMB who underwent both 3D-EPI and GRE QSM scans were retrospectively enrolled. Two radiologists evaluated images independently, and Cohen κ coefficients were calculated to compare CMB detection performance. Results: Phantom study showed excellent validity of 3D-EPI QSM on both MR scanners: Skyra, R2 = 0.996, P < 0.001, ICC = 0.997, mean difference, −2 ppb (95% confidence interval [CI], −45 to 40 ppb); Prisma, R2 = 0.992, P < 0.001, ICC = 0.988, mean difference, 15 ppb (95% CI, −67 to 97 ppb). A human study of 40 healthy volunteers (59 ± 13 years, 25 women) showed excellent reliability with 3D-EPI QSM for both single-TE and multi-TE GRE (R2 = 0.981, P < 0.001, ICC = 0.988; R2 = 0.983, P < 0.001, ICC = 0.990, respectively), supported by a Bland-Altman mean difference of 4 ppb (95% CI, −15 to 23 ppb) for single-TE GRE and 3 ppb (95% CI, −15 to 20 ppb) for multi-TE GRE. The CMB detection performance evaluation from 38 patients (51 ± 20 years, 20 women) showed almost perfect agreement between 3D-EPI and GRE QSM for both raters (κ = 0.923 and 0.942, P < 0.001). Conclusions: Faster QSM from 3D-EPI demonstrated excellent accuracy, reliability, and CMB detection performance

    Accuracy, repeatability, and reproducibility of T1 and T2 relaxation times measurement by 3D magnetic resonance fingerprinting with different dictionary resolutions

    Get PDF
    [Objectives] To assess the accuracy, repeatability, and reproducibility of T₁ and T₂ relaxation time measurements by three-dimensional magnetic resonance fingerprinting (3D MRF) using various dictionary resolutions. [Methods] The ISMRM/NIST phantom was scanned daily for 10 days in two 3 T MR scanners using a 3D MRF sequence reconstructed using four dictionaries with varying step sizes and one dictionary with wider ranges. Thirty-nine healthy volunteers were enrolled: 20 subjects underwent whole-brain MRF scans in both scanners and the rest in one scanner. ROI/VOI analyses were performed on phantom and brain MRF maps. Accuracy, repeatability, and reproducibility metrics were calculated. [Results] In the phantom study, all dictionaries showed high T₁ linearity to the reference values (R² > 0.99), repeatability (CV 0.98), repeatability (CV < 6%), and reproducibility (CV ≤ 4%) for T₂ measurement. The volunteer study demonstrated high T1 reproducibility of within-subject CV (wCV) < 4% by all dictionaries with the same ranges, both in the brain parenchyma and CSF. Yet, reproducibility was moderate for T₂ measurement (wCV < 8%). In CSF measurement, dictionaries with a smaller range showed a seemingly better reproducibility (T₁, wCV 3%; T₂, wCV 8%) than the much wider range dictionary (T₁, wCV 5%; T₂, wCV 13%). Truncated CSF relaxometry values were evident in smaller range dictionaries. [Conclusions] The accuracy, repeatability, and reproducibility of 3D MRF across various dictionary resolutions were high for T₁ and moderate for T₂ measurements. A lower-resolution dictionary with a well-defined range may be adequate, thus significantly reducing the computational load. [Key Points] • A lower-resolution dictionary with a well-defined range may be sufficient for 3D MRF reconstruction. • CSF relaxation times might be underestimated due to truncation by the upper dictionary range. • Dictionary with a higher upper range might be advisable, especially for CSF evaluation and elderly subjects whose perivascular spaces are more prominent

    Clinical Application of MPRAGE Wave Controlled Aliasing in Parallel Imaging (Wave-CAIPI): A Comparative Study with MPRAGE GRAPPA

    Get PDF
    PURPOSE: To compare reliability and elucidate clinical application of magnetization-prepared rapid gradient-echo (MPRAGE) with 9-fold acceleration by using wave-controlled aliasing in parallel imaging (Wave-CAIPI 3 × 3) in comparison to conventional MPRAGE accelerated by using generalized autocalibrating partially parallel acquisition (GRAPPA) 2 × 1. METHODS: A total of 26 healthy volunteers and 33 patients were included in this study. Subjects were scanned with two MPRAGEs, GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 acquired in 5 min 21 s and 1 min 42 s, respectively, on a 3T MR scanner. Healthy volunteers underwent additional two MPRAGEs (CAIPI 3 × 3 and GRAPPA 3 × 3). The image quality of the four MPRAGEs was visually evaluated with a 5-point scale in healthy volunteers, and the SNR of four MPRAGEs was also calculated by measuring the phantom 10 times with each MPRAGE. Based on the results of the visual evaluation, voxel-based morphometry (VBM) analyses, including subfield analysis, were performed only for GRAPPA 2 × 1 and Wave-CAIPI 3 × 3. Correlation of segmentation results between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 was assessed. RESULTS: In visual evaluations, scores for MPRAGE GRAPPA 2 × 1 (mean rank: 4.00) were significantly better than those for Wave-CAIPI 3 × 3 (mean rank: 3.00), CAIPI 3 × 3 (mean rank: 1.83), and GRAPPA 3 × 3 (mean rank: 1.17), and scores for Wave-CAIPI 3×3 were significantly better than those for CAIPI 3 × 3 and GRAPPA 3 × 3. Image noise was evident at the center for additional MPRAGE CAIPI 3 × 3 and GRAPPA 3 × 3. The correlation of segmentation results between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3 was higher than 0.85 in all VOIs except globus pallidus. Subfield analysis of hippocampus also showed a high correlation between GRAPPA 2 × 1 and Wave-CAIPI 3 × 3. CONCLUSION: MPRAGE Wave-CAIPI 3 × 3 shows relatively better contrast, despite of its short scan time of 1 min 42 s. The volumes derived from automated segmentation of MPRAGE Wave-CAIPI are considered to be reliable measures

    Signal Intensity and Volume of Pituitary and Thyroid Glands in Preterm and Term Infants

    Get PDF
    [Background]: Hypothalamic–pituitary–thyroid (HPT) maturation has not been extensively evaluated using neonatal MRI, even though both structures are visualized on MRI. [Hypothesis]: That signal intensity and volume of pituitary and thyroid (T) glands on MRI in neonates may be interrelated. [Study Type]: Retrospective. [Subjects]: In all, 102 participants. [Field Strength/Sequence]: 3.0T, T₁‐weighted pointwise encoding time reduction with radial acquisition (PETRA).[ Assessment]: The volume of interest of the anterior pituitary (AP), posterior pituitary (PP), and T on MRI were defined on T₁‐PETRA by two radiologists, and volumes of AP (AP_vol) and thyroid (T_vol) were calculated. Gestational age (GA), chronological age (CA), GA+CA, birth weight (BW), and thyroid function were recorded. Mean and maximum signal intensities of AP, PP, and T were normalized using signals from the pons and spinal cord as follows: signal ratio of anterior pituitary/pons (AP/pons), signal ratio of posterior pituitary/pons (PP/pons), and signal ratio of thyroid/cord (T/cord) T/cord, respectively. [Statistical Tests]: Correlations between signal intensity and volume measures and GA, CA, GA+CA, and BW were assessed using Pearson's correlation coefficient or Spearman's rank correlation coefficient. Thyroid function analysis and Tmean/cord, Tmax/cord, and T_vol were evaluated using the Steel–Dwass test. Results: APmean/pons correlated positively with GA (ρ = 0.62, P < 0.001) and BW (ρ = 0.74, P < 0.001), and negatively with CA (ρ = −0.86, P < 0.001) and GA+CA (ρ = −0.46, P < 0.001). PPmean/pons correlated positively with GA (ρ = 0.49, P < 0.001) and BW (ρ = 0.63, P < 0.001), and negatively with CA (ρ = −0.70, P < 0.001) and GA+CA (r = −0.38, P < 0.001). Tmean/cord correlated positively with GA (ρ = 0.48, P < 0.001) and BW (ρ = 0.55, P < 0.001), and negatively with CA (ρ = −0.59, P < 0.001) and GA+CA (ρ = −0.22, P = 0.03). AP_vol correlated positively with GA (ρ = 0.68, P < 0.001) and BW (ρ = 0.73, P < 0.001), and negatively with CA (ρ = −0.72, P < 0.001). T_vol correlated positively with GA (ρ = 0.50, P < 0.001) and BW (ρ = 0.61, P < 0.001), and negatively with CA (ρ = −0.54, P < 0.001). APmean/pons correlated positively with Tmean/cord (ρ = 0.61, P < 0.001). [Data Conclusion]: Signal and volume of pituitary and thyroid glands correlated positively with GA and BW, and negatively with CA in neonates. [Level of Evidence]: 4 [Technical Efficacy Stage]:

    Thin-slice reverse encoding distortion correction DWI facilitates visualization of non-functioning pituitary neuroendocrine tumor (PitNET)/pituitary adenoma and surrounding normal structures

    No full text
    Abstract Background To evaluate the clinical usefulness of thin-slice echo-planar imaging (EPI)-based diffusion-weighted imaging (DWI) with an on-console distortion correction technique, termed reverse encoding distortion correction DWI (RDC-DWI), in patients with non-functioning pituitary neuroendocrine tumor (PitNET)/pituitary adenoma. Methods Patients with non-functioning PitNET/pituitary adenoma who underwent 3-T RDC-DWI between December 2021 and September 2022 were retrospectively enrolled. Image quality was compared among RDC-DWI, DWI with correction for distortion induced by B 0 inhomogeneity alone (B0-corrected-DWI), and original EPI-based DWI with anterior-posterior phase-encoding direction (AP-DWI). Susceptibility artifact, anatomical visualization of cranial nerves, overall tumor visualization, and visualization of cavernous sinus invasion were assessed qualitatively. Quantitative assessment of geometric distortion was performed by evaluation of anterior and posterior displacement between each DWI and the corresponding three-dimensional T2-weighted imaging. Signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient values were measured. Results Sixty-four patients (age 70.8 ± 9.9 years [mean ± standard deviation]; 33 females) with non-functioning PitNET/pituitary adenoma were evaluated. In terms of susceptibility artifacts in the frontal and temporal lobes, visualization of left trigeminal nerve, overall tumor visualization, and anterior displacement, RDC-DWI performed the best and B0-corrected-DWI performed better than AP-DWI. The right oculomotor and right trigeminal nerves were better visualized by RDC-DWI than by B0-corrected-DWI and AP-DWI. Visualization of cavernous sinus invasion and posterior displacement were better by RDC-DWI and B0-corrected-DWI than by AP-DWI. SNR and CNR were the highest for RDC-DWI. Conclusions RDC-DWI achieved excellent image quality regarding susceptibility artifact, geometric distortion, and tumor visualization in patients with non-functioning PitNET/pituitary adenoma. Relevance statement RDC-DWI facilitates excellent visualization of the pituitary region and surrounding normal structures, and its on-console distortion correction technique is convenient. RDC-DWI can clearly depict cavernous sinus invasion of PitNET/pituitary adenoma even without contrast medium. Key points • RDC-DWI is an EPI-based DWI technique with a novel on-console distortion correction technique. • RDC-DWI corrects distortion due to B 0 field inhomogeneity and eddy current. • We evaluated the usefulness of thin-slice RDC-DWI in non-functioning PitNET/pituitary adenoma. • RDC-DWI exhibited excellent visualization in the pituitary region and surrounding structures. • In addition, the on-console distortion correction of RDC-DWI is clinically convenient. Graphical Abstrac
    corecore