302 research outputs found
Fractional Quantum Hall Effect in a Diluted Magnetic Semiconductor
We report the observation of the fractional quantum Hall effect in the lowest
Landau level of a two-dimensional electron system (2DES), residing in the
diluted magnetic semiconductor Cd(1-x)Mn(x)Te. The presence of magnetic
impurities results in a giant Zeeman splitting leading to an unusual ordering
of composite fermion Landau levels. In experiment, this results in an
unconventional opening and closing of fractional gaps around filling factor v =
3/2 as a function of an in-plane magnetic field, i.e. of the Zeeman energy. By
including the s-d exchange energy into the composite Landau level spectrum the
opening and closing of the gap at filling factor 5/3 can be modeled
quantitatively. The widely tunable spin-splitting in a diluted magnetic 2DES
provides a novel means to manipulate fractional states
Mapping of quantum well eigenstates with semimagnetic probes
We present results of transmission measurements on CdTe quantum wells with
thin semimagnetic CdMnTe probe layers embedded in various positions along the
growth axis. The presence of the probes allow us to map the probability density
functions by two independent methods: analyzing the exciton energy position and
the exciton Zeeman splitting. We apply both approaches to map the first three
quantum well eigenstates and we find that both of them yield equally accurate
results.Comment: Accepted for publication in Physical Review
Selection of strain and optimization of mutanase production in submerged cultures of Trichoderma harzianum
Nineteen fungal strains belonging to different genera were tested for extracellular mutanase production in shaken flasks. The optimal enzymatic activity was achieved by Trichoderma harzianum F-470, a strain for which the mutanase productivity has not yet been published. Some of factors affecting the enzyme production in shaken flasks and aerated fermenter cultures have been standardized. Mandels mineral medium with initial pH 5.3, containing 0.25% mutan and inoculated with 10% of the 48-h mycelium, was the best for enzyme production. A slight mutanolytic activity was also found when sucrose, raffinose, lactose and melibiose were carbon sources. Application of optimized medium and cultural conditions, as well as use of a fermenter with automatic pH control set at pH 6.0 enabled to obtain a high mutanase yield (0.33 U/ml, 2.5 U/mg protein) in a short time (2-3 days). The enzyme in crude state was stable over a pH range of 4.5-6.0, and at temperatures up to 35 °C; its maximum activity was at 40 °C and at pH 5.5
Mutanase from Paenibacillus sp. MP-1 produced inductively by fungal α-1,3-glucan and its potential for the degradation of mutan and Streptococcus mutans biofilm
Laetiporus sulphureus is a source of α-1,3-glucan that can substitute for the commercially-unavailable streptococcal mutan used to induce microbial mutanases. The water-insoluble fraction of its fruiting bodies from 0.15 to 0.2% (w/v) induced mutanase activity in Paenibacillus sp. MP-1 at 0.35 μ ml−1. The mutanase extensively hydrolyzed streptococcal mutan, giving 23% of saccharification, and 83% of solubilization of glucan after 6 h. It also degraded α-1,3-polymers of biofilms, formed in vitro by Streptococcus mutans, even after only 3 min of contact
- …