274 research outputs found
Load Balancing for Mobility-on-Demand Systems
In this paper we develop methods for maximizing the throughput of a mobility-on-demand urban transportation system. We consider a finite group of shared vehicles, located at a set of stations. Users arrive at the stations, pick-up vehicles, and drive (or are driven) to their destination station where they drop-off the vehicle. When some origins and destinations are more popular than others, the system will inevitably become out of balance: Vehicles will build up at some stations, and become depleted at others. We propose a robotic solution to this rebalancing problem that involves empty robotic vehicles autonomously driving between stations. We develop a rebalancing policy that minimizes the number of vehicles performing rebalancing trips. To do this, we utilize a fluid model for the customers and vehicles in the system. The model takes the form of a set of nonlinear time-delay differential equations. We then show that the optimal rebalancing policy can be found as the solution to a linear program. By analyzing the dynamical system model, we show that every station reaches an equilibrium in which there are excess vehicles and no waiting customers.We use this solution to develop a real-time rebalancing policy which can operate in highly variable environments. We verify policy performance in a simulated mobility-on-demand environment with stochastic features found in real-world urban transportation networks
Deformability-induced lift force in spiral microchannels for cell separation
Cell sorting and isolation from a heterogeneous mixture is a crucial task in many aspects of cell biology, biotechnology and medicine. Recently, there has been an interest in methods allowing cell separation upon their intrinsic properties such as cell size and deformability, without the need for use of biochemical labels. Inertial focusing in spiral microchannels has been recognised as an attractive approach for high-throughput cell sorting for myriad point of care and clinical diagnostics. Particles of different sizes interact to a different degree with the fluid flow pattern generated within the spiral microchannel and that leads to particles ordering and separation based on size. However, the deformable nature of cells adds complexity to their ordering within the spiral channels. Herein, an additional force, deformability-induced lift force (FD), involved in the cell focusing mechanism within spiral microchannels has been identified, investigated and reported for the first time, using a cellular deformability model (where the deformability of cells is gradually altered using chemical treatments). Using this model, we demonstrated that spiral microchannels are capable of separating cells of the same size but different deformability properties, extending the capability of the previous method. We have developed a unique label-free approach for deformability-based purification through coupling the effect of FD with inertial focusing in spiral microchannels. This microfluidic-based purification strategy, free of the modifying immuno-labels, allowing cell processing at a large scale (millions of cells per min and mls of medium per minute), up to high purities and separation efficiency and without compromising cell quality
Factors that support Indigenous involvement in multi-actor environmental stewardship
Regional, multi-actor environmental collaborations bring together diverse parties to achieve environmental protection and stewardship outcomes. Involving a range of participants helps involve alternative forms of knowledge, expertise, and perspectives; it may also present greater challenges in reaching agreements, particularly when both Indigenous and non-Indigenous parties are involved. The authors conduct a cross-case study of 39 regional partnerships involving Indigenous nations from the Great Lakes basin of North America with the aim of determining the factors that enable Indigenous partners to remain engaged in multi-actor collaborations. Six characteristics influenced Indigenous nations’ willingness to remain engaged: respect for Indigenous knowledges, control of knowledge mobilization, intergenerational involvement, self-determination, continuous cross-cultural education, and early involvement. Being attentive of these factors can help partnerships achieve their environmental goals by keeping important partners at the table
Recommended from our members
Word Detection in Individual Subjects Is Difficult to Probe With Fast Periodic Visual Stimulation
Measuring cognition in single subjects presents unique challenges. On the other hand, individually sensitive measurements offer extraordinary opportunities, from informing theoretical models to enabling truly individualised clinical assessment. Here, we test the robustness of fast, periodic, and visual stimulation (FPVS), an emerging method proposed to elicit detectable responses to written words in the electroencephalogram (EEG) of individual subjects. The method is non-invasive, passive, and requires only a few minutes of testing, making it a potentially powerful tool to test comprehension in those who do not speak or who struggle with long testing procedures. In an initial study, Lochy et al. (2015) used FPVS to detect word processing in eight out of 10 fluent French readers. Here, we attempted to replicate their study in a new sample of 10 fluent English readers. Participants viewed rapid streams of pseudo-words with words embedded at regular intervals, while we recorded their EEG. Based on Lochy et al. (2015) we expected that words would elicit a steady-state response at the word-presentation frequency (2 Hz) over parieto-occipital electrode sites. However, across 40 datasets (10 participants, two conditions, and two regions of interest–ROIs), only four datasets met the criteria for a unique response to words. This corresponds to a 10% detection rate. We conclude that FPVS should be developed further before it can serve as an individually-sensitive measure of written word processing
The repeat FIT (RFIT) study:Does repeating faecal immunochemical tests provide reassurance and improve colorectal cancer detection?
AimFaecal immunochemical tests (FIT) are highly sensitive for colorectal cancer (CRC) detection. Little evidence exists regarding repeat FIT. The repeat FIT (RFIT) study aimed to determine whether second and third FIT provide reassurance and improve CRC or significant bowel disease (SBD) identification.MethodsThis was a prospective observational study. Patients recruited from urgent referrals returned three FIT and underwent colonoscopy. Chi-square tests compared categorical data. Diagnostic accuracy variables (sensitivity/specificity/positive predictive value [PPV]/negative predictive value [NPV]) were calculated for one, two and three FIT (95% CI). Three negative FIT (<10 μg Hb/g of faeces [μg/g]) groups (one, two, three) were compared with positive groups (one or more FIT ≥10 μg/g). CRC and SBD detection rates were compared by strategy.ResultsA total of 460 patients (mean age: 66.8 years, 233 males and 227 females, 23 CRC, 80 SBD) were included in the study. For one, two and three negative FIT, CRC sensitivity remained static (95.7%); specificity (44.6%, 40.7% and 38.4%) and NPV decreased (99.5%, 99.4% and 99.4%). For SBD, sensitivity increased (78.8%, 83.8% and 86.3%), specificity decreased (47.4%, 43.7% and 41.6%) and NPV increased (91.4%, 92.7% and 93.5%). In one, two and three positive FIT groups, CRC detection was 8.3%,16.1% and 20.9%. CRC mean FIT was 150 μg/g, <6 μg/g for benign pathology.ConclusionsOne or more negative FIT increases the sensitivity for CRC/SBD. Repeating FIT provides greater differentiation of patients with and without CRC/SBD compared to single FIT but is associated with decreased specificity and PPV. Multiple negative FIT may offer reassurance; however, application of repeating FIT may be restricted given the associated increase in investigations S1
Correction : Deformability-induced lift force in spiral microchannels for cell separation (Lab Chip (2020) 20 (614-625) DOI: 10.1039/c9lc01000a)
The authors regret that the acknowledgements section was not complete in the original manuscript. The corrected acknowledgements are given below. FACS sorting was performed in the University of Edinburgh FACS Facility by Dr Martin Waterfall. Jurkat cells expressing green fluorescence protein (GFP+), were kindly provided by Dr Miguel Hermida (Heriot-Watt University, UK). EG gratefully acknowledges the funding from Scottish Industrial Biotechnology Innovation Centre (IBioIC) for her doctoral studies, Royal Society of Edinburgh for the JM Lessells travel scholarship allowing visiting OO's lab and performing the experimental work as well as Epigem Ltd. for providing resources for this project. OO gratefully acknowledges funding from the German Federal Ministry of Education and Research (ZIK grant under grant agreement 03Z22CN11) and from the Deutschen Zentrum für Herz-Kreislaufforschung. MJ was supported by the Royal Academy of Engineering under the Research Fellowship scheme (RF/201718/1741). MJ would also like to thank the Engineering and Physical Sciences Research Council (EPSRC) for their support (EP/R006482/1).The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers
The 'causes' of teenage pregnancy: review of South African research - Part 2
This article forms the second of a two-part series in which South African research on teenage pregnancy is reviewed. Part 1 of the series dealt with the consequences of teenage pregnancy; this paper reviews the 'causes' thereof. International literature is incorporated in the discussion by way of comparison. Contributory factors which have been investigated by South African researchers include: reproductive ignorance; the earlier occurrence of menarche; risktaking behaviour; psychological problems; peer influence; co-ercive sexual relations; dysfunctional family patterns; poor health services; socio-economic status; the breakdown of cultural traditions; and the cultural value placed on children. Preston-Whyte and colleagues present a revisionist argument, stating that early pregnancy may represent a rational life choice for certain adolescent women. The article is concluded with comments on methodological problems encountered in the South African research, and a discussion on the implications in terms of policy formulation
Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia
BACKGROUND: Most patients with familial primary pulmonary hypertension have defects in the gene for bone morphogenetic protein receptor II (BMPR2), a member of the transforming growth factor beta (TGF-beta) superfamily of receptors. Because patients with hereditary hemorrhagic telangiectasia may have lung disease that is indistinguishable from primary pulmonary hypertension, we investigated the genetic basis of lung disease in these patients.
METHODS: We evaluated members of five kindreds plus one individual patient with hereditary hemorrhagic telangiectasia and identified 10 cases of pulmonary hypertension. In the two largest families, we used microsatellite markers to test for linkage to genes encoding TGF-beta-receptor proteins, including endoglin and activin-receptor-like kinase 1 (ALK1), and BMPR2. In subjects with hereditary hemorrhagic telangiectasia and pulmonary hypertension, we also scanned ALK1 and BMPR2 for mutations.
RESULTS: We identified suggestive linkage of pulmonary hypertension with hereditary hemorrhagic telangiectasia on chromosome 12q13, a region that includes ALK1. We identified amino acid changes in activin-receptor-like kinase 1 that were inherited in subjects who had a disorder with clinical and histologic features indistinguishable from those of primary pulmonary hypertension. Immunohistochemical analysis in four subjects and one control showed pulmonary vascular endothelial expression of activin-receptor-like kinase 1 in normal and diseased pulmonary arteries.
CONCLUSIONS: Pulmonary hypertension in association with hereditary hemorrhagic telangiectasia can involve mutations in ALK1. These mutations are associated with diverse effects, including the vascular dilatation characteristic of hereditary hemorrhagic telangiectasia and the occlusion of small pulmonary arteries that is typical of primary pulmonary hypertension
- …