4,491 research outputs found

    The Nuclear Outflow in NGC 2110

    Full text link
    We present a HST/STIS spectroscopic and optical/radio imaging study of the Seyfert NGC 2110 aiming to measure the dynamics and understand the nature of the nuclear outflow in the galaxy. Previous HST studies have revealed the presence of a linear structure in the Narrow-Line Region (NLR) aligned with the radio jet. We show that this structure is strongly accelerated, probably by the jet, but is unlikely to be entrained in the jet flow. The ionisation properties of this structure are consistent with photoionisation of dusty, dense gas by the active nucleus. We present a plausible geometrical model for the NLR, bringing together various components of the nuclear environment of the galaxy. We highlight the importance of the circum-nuclear disc in determining the appearance of the emission line gas and the morphology of the jet. From the dynamics of the emission line gas, we place constraints on the accelerating mechanism of the outflow and discuss the relative importance of radio source synchrotron pressure, radio jet ram pressure and nuclear radiation pressure in accelerating the gas. While all three mechanisms can account for the energetics of the emission line gas, gravitational arguments support radio jet ram pressure as the most likely source of the outflow.Comment: 15 pages, 7 figures; accepted to MNRA

    HST Observations of the Double-Peaked Emission Lines in the Seyfert Galaxy Markarian 78: Mass Outflows from a Single AGN

    Full text link
    Previous ground based observations of the Seyfert 2 galaxy Mrk 78 revealed a double set of emission lines, similar to those seen in several AGN from recent surveys. Are the double lines due to two AGN with different radial velocities in the same galaxy, or are they due to mass outflows from a single AGN?We present a study of the outflowing ionized gas in the resolved narrow-line region (NLR) of Mrk 78 using observations from Space Telescope Imaging Spectrograph (STIS) and Faint Object Camera (FOC) aboard the Hubble Space Telescope(HST) as part of an ongoing project to determine the kinematics and geometries of active galactic nuclei (AGN) outflows. From the spectroscopic information, we deter- mined the fundamental geometry of the outflow via our kinematics modeling program by recreating radial velocities to fit those seen in four different STIS slit positions. We determined that the double emission lines seen in ground-based spectra are due to an asymmetric distribution of outflowing gas in the NLR. By successfully fitting a model for a single AGN to Mrk 78, we show that it is possible to explain double emission lines with radial velocity offsets seen in AGN similar to Mrk 78 without requiring dual supermassive black holes.Comment: 22 pages, 7 figures (2 color), accepted for publication in The Astrophysical Journa

    Locally Optimal Control of Quantum Systems with Strong Feedback

    Full text link
    For quantum systems with high purity, we find all observables that, when continuously monitored, maximize the instantaneous reduction in the von Neumann entropy. This allows us to obtain all locally optimal feedback protocols with strong feedback, and explicit expressions for the best such protocols for systems of size N <= 4. We also show that for a qutrit the locally optimal protocol is the optimal protocol for a given range of control times, and derive an upper bound on all optimal protocols with strong feedback.Comment: 4 pages, Revtex4. v2: published version (some errors corrected

    A Note on the Viability of Gaseous Ionization in Active Galaxies by Fast Shocks

    Get PDF
    Observational evidence suggest that shocks may affect the spatial and velocity distributions of gas in the NLR/ENLR of some active galaxies. It thus seemed plausible that shocks may also energize the NLR. The observed emission line ratios strongly favor photoionization as the heating source, but it is not clear whether the ionizing radiation is generated in the NLR by "photoionizing shocks" or whether it originates at the central continuum source. Here I point out that shocks are highly inefficient in producing line emission. Shocks in the NLR can convert at most 10^{-6} of the rest mass to ionizing radiation, compared with a maximum conversion efficiency of ~0.1 for the central continuum source. The required mass flow rate through shocks in the NLR is thus a few orders of magnitude higher than the mass accretion rate required to power the NLR by the central continuum source. Since gravity appears to dominate the NLR cloud dynamics, shocks must lead to an inflow, and the implied high inflow rates can be ruled out in most active galaxies. NLR dynamics driven by a thermal wind or by some jet configurations may produce the mass flux through shocks required for photoionizing shocks to be viable, but the mass flux inward from the NLR must be kept ~100-1000 times smaller. Photoionizing shocks are a viable mechanism in very low luminosity active galaxies if they are highly sub-Eddington (<~10^{-4}) and if they convert mass to radiation with a very low efficiency (<~10^{-4}).Comment: 6 pages, aas2pp4.sty, accepted for publication in ApJ Letter

    Ionization Mechanisms in Jet-Dominated Seyferts: A Detailed Case Study

    Full text link
    For the past 10 years there has been an active debate over whether fast shocks play an important role in ionizing emission line regions in Seyfert galaxies. To investigate this claim, we have studied the Seyfert 2 galaxy Mkn 78, using HST UV/optical images and spectroscopy. Since Mkn 78 provides the archetypal jet-driven bipolar velocity field, if shocks are important anywhere they should be important in this object. Having mapped the emission line fluxes and velocity field, we first compare the ionization conditions to standard photoionization and shock models. We find coherent variations of ionization consistent with photoionization model sequences which combine optically thick and thin gas, but are inconsistent with either autoionizing shock models or photoionization models of just optically thick gas. Furthermore, we find absolutely no link between the ionization of the gas and its kinematic state, while we do find a simple decline of ionization degree with radius. We feel this object provides the strongest case to date against the importance of shock related ionization in Seyferts.Comment: 4 pages, 1 figure, to appear in the proceedings of IAU Symposium 222 "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", T. Storchi Bergmann, L.C. Ho & H.R. Schmitt, ed

    Recoiling Black Holes in Quasars

    Full text link
    Recent simulations of merging black holes with spin give recoil velocities from gravitational radiation up to several thousand km/s. A recoiling supermassive black hole can retain the inner part of its accretion disk, providing fuel for a continuing QSO phase lasting millions of years as the hole moves away from the galactic nucleus. One possible observational manifestation of a recoiling accretion disk is in QSO emission lines shifted in velocity from the host galaxy. We have examined QSOs from the Sloan Digital Sky Survey with broad emission lines substantially shifted relative to the narrow lines. We find no convincing evidence for recoiling black holes carrying accretion disks. We place an upper limit on the incidence of recoiling black holes in QSOs of 4% for kicks greater than 500 km/s and 0.35% for kicks greater than 1000 km/s line-of-sight velocity.Comment: 4 pages, 4 figures, uses emulateapj, Submitted to ApJ Letter

    Listen carefully: transgender voices in the workplace

    Get PDF
    We find that only 17% of FTSE 100 company websites refer directly to transgender (‘trans’) individuals, illustrating the extent to which trans voices are unheard in the workplace. We propose that these voices are missing for a number of reasons: voluntary silence to protect oneself from adverse circumstances; the subsumption of trans voices within the larger ‘LGBT’ community; assimilation, wherein many trans voices become affiliated with those of their post-transition gender; multiple trans voices arising from diversity within the transgender community; and limited access to voice mechanisms for transgender employees. We identify the negative implications of being unheard for individual trans employees, for organizational outcomes, and for business and management scholarship, and propose ways in which organizations can listen more carefully to trans voices. Finally, we introduce an agenda for future research that tests the applicability of the theoretical framework of invisible stigma disclosure to transgender individuals, and calls for new theoretical and empirical developments to identify HRM challenges and best practices for respecting trans employees and their choices to remain silent or be heard

    Computer model calibration with large non-stationary spatial outputs: application to the calibration of a climate model

    Get PDF
    Bayesian calibration of computer models tunes unknown input parameters by comparing outputs with observations. For model outputs that are distributed over space, this becomes computationally expensive because of the output size. To overcome this challenge, we employ a basis representation of the model outputs and observations: we match these decompositions to carry out the calibration efficiently. In the second step, we incorporate the non-stationary behaviour, in terms of spatial variations of both variance and correlations, in the calibration. We insert two integrated nested Laplace approximation-stochastic partial differential equation parameters into the calibration. A synthetic example and a climate model illustration highlight the benefits of our approach

    Mid-term report for the CORE Organic II funded project. “Innovative cropping Practices to increase soil health of organic fruit tree orchards” BIO-INCROP

    Get PDF
    Activities performed in the first part of BIO-INCROP project concern five of the eight main objectives fixed in the project proposal. They are: Evaluation of soil borne pest and pathogens involved in replant disease Role of rhizospheric bacterial and fungal communities in plant health Selection of naturally available resources to increase microbial diversity and biomass Compost and organic amendments Evaluation of biologically active formulates The document reports main research results and shows main items of dissemination activity performed in the first part of the project
    • 

    corecore