3,303 research outputs found

    Ionization Mechanisms in Jet-Dominated Seyferts: A Detailed Case Study

    Full text link
    For the past 10 years there has been an active debate over whether fast shocks play an important role in ionizing emission line regions in Seyfert galaxies. To investigate this claim, we have studied the Seyfert 2 galaxy Mkn 78, using HST UV/optical images and spectroscopy. Since Mkn 78 provides the archetypal jet-driven bipolar velocity field, if shocks are important anywhere they should be important in this object. Having mapped the emission line fluxes and velocity field, we first compare the ionization conditions to standard photoionization and shock models. We find coherent variations of ionization consistent with photoionization model sequences which combine optically thick and thin gas, but are inconsistent with either autoionizing shock models or photoionization models of just optically thick gas. Furthermore, we find absolutely no link between the ionization of the gas and its kinematic state, while we do find a simple decline of ionization degree with radius. We feel this object provides the strongest case to date against the importance of shock related ionization in Seyferts.Comment: 4 pages, 1 figure, to appear in the proceedings of IAU Symposium 222 "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", T. Storchi Bergmann, L.C. Ho & H.R. Schmitt, ed

    The Nuclear Outflow in NGC 2110

    Full text link
    We present a HST/STIS spectroscopic and optical/radio imaging study of the Seyfert NGC 2110 aiming to measure the dynamics and understand the nature of the nuclear outflow in the galaxy. Previous HST studies have revealed the presence of a linear structure in the Narrow-Line Region (NLR) aligned with the radio jet. We show that this structure is strongly accelerated, probably by the jet, but is unlikely to be entrained in the jet flow. The ionisation properties of this structure are consistent with photoionisation of dusty, dense gas by the active nucleus. We present a plausible geometrical model for the NLR, bringing together various components of the nuclear environment of the galaxy. We highlight the importance of the circum-nuclear disc in determining the appearance of the emission line gas and the morphology of the jet. From the dynamics of the emission line gas, we place constraints on the accelerating mechanism of the outflow and discuss the relative importance of radio source synchrotron pressure, radio jet ram pressure and nuclear radiation pressure in accelerating the gas. While all three mechanisms can account for the energetics of the emission line gas, gravitational arguments support radio jet ram pressure as the most likely source of the outflow.Comment: 15 pages, 7 figures; accepted to MNRA

    The effect of distractors on saccades and adaptation of saccades in strabismus

    Get PDF
    This paper reports two experiments to determine the contribution of the suppressing eye to the generation of saccadic eye movements in constant strabismus. Eye movements were recorded using a Skalar infra-red recorder. Experiment 1 tested six participants with constant strabismus, pathological suppression and no clinically demonstrable binocular single vision (BSV). We explored the effect of visual distractors presented monocularly (to either the fixing eye or the strabismic eye) and binocularly, on saccade latency and accuracy. Saccade latency significantly increased when distractors were presented to the strabismic eye compared to the no distractor condition. In all participants the effect on latency, with distractors presented to the strabismic eye, was maximum when distractors were presented towards the location of the anatomical fovea. Saccade accuracy was reduced with ipsilateral distractors to the target when presented binocularly or monocularly to the fixing eye but not affected by distractors presented to the strabismic eye. Experiment 2 investigated fast disconjugate saccade adaptations in six participants with constant strabismus, pathological suppression and no clinically demonstrable BSV and for comparison 8 with normal bifoveal BSV. Saccade disconjugacy was induced using an electronic feedback system in which the calibrated eye movement position signal could be scaled by a factor (the feedback gain) to move the target visible to one eye during binocular viewing. In all BSV participants and 3 of 6 participants with constant strabismus, saccadic adaptation occurred rapidly such that under conditions of visual feedback saccades became increasingly disconjugate. These disconjugacies persisted when normal viewing conditions were restored. The presence of an adaptive mechanism to adjust the binocular co-ordination of saccades in the presence of constant strabismus with suppression and no clinically demonstrable BSV has been demonstrated. Mechanisms that might explain such results are discussed

    Clues to Quasar Broad Line Region Geometry and Kinematics

    Get PDF
    We present evidence that the high-velocity CIV lambda 1549 emission line gas of radio-loud quasars may originate in a disk-like configuration, in close proximity to the accretion disk often assumed to emit the low-ionization lines. For a sample of 36 radio-loud z~2 quasars we find the 20--30% peak width to show significant inverse correlations with the fractional radio core-flux density, R, the radio axis inclination indicator. Highly inclined systems have broader line wings, consistent with a high-velocity field perpendicular to the radio axis. By contrast, the narrow line-core shows no such relation with R, so the lowest velocity CIV-emitting gas has an inclination independent velocity field. We propose that this low-velocity gas is located at higher disk-altitudes than the high-velocity gas. A planar origin of the high-velocity CIV-emission is consistent with the current results and with an accretion disk-wind emitting the broad lines. A spherical distribution of randomly orbiting broad-line clouds and a polar high-ionization outflow are ruled out.Comment: 5 Latex pages, 1 figure, accepted for publication in ApJ Letter

    HST Observations of the Double-Peaked Emission Lines in the Seyfert Galaxy Markarian 78: Mass Outflows from a Single AGN

    Full text link
    Previous ground based observations of the Seyfert 2 galaxy Mrk 78 revealed a double set of emission lines, similar to those seen in several AGN from recent surveys. Are the double lines due to two AGN with different radial velocities in the same galaxy, or are they due to mass outflows from a single AGN?We present a study of the outflowing ionized gas in the resolved narrow-line region (NLR) of Mrk 78 using observations from Space Telescope Imaging Spectrograph (STIS) and Faint Object Camera (FOC) aboard the Hubble Space Telescope(HST) as part of an ongoing project to determine the kinematics and geometries of active galactic nuclei (AGN) outflows. From the spectroscopic information, we deter- mined the fundamental geometry of the outflow via our kinematics modeling program by recreating radial velocities to fit those seen in four different STIS slit positions. We determined that the double emission lines seen in ground-based spectra are due to an asymmetric distribution of outflowing gas in the NLR. By successfully fitting a model for a single AGN to Mrk 78, we show that it is possible to explain double emission lines with radial velocity offsets seen in AGN similar to Mrk 78 without requiring dual supermassive black holes.Comment: 22 pages, 7 figures (2 color), accepted for publication in The Astrophysical Journa

    Acquisition of antibody isotypes against Plasmodium falciparum blood stage antigens in a birth cohort

    Get PDF
    Information on the period during which infants lose their maternally derived antibodies to malaria and begin to acquire naturally their own immune responses against parasite antigens is crucial for understanding when malaria vaccines may be best administered. This study investigated the rates of decline and acquisition of serum antibody isotypes IgG1, IgG2, IgG3, IgG4, IgM and IgA to Plasmodium falciparum antigens apical membrane antigen (AMA1), merozoite surface proteins (MSP1-19, MSP2 and MSP3) in a birth cohort of 53 children living in an urban area in the Gambia, followed over the first 3 years of life (sampled at birth, 4, 9, 18 and 36 months). Antigen-specific maternally transferred antibody isotypes of all IgG subclasses were detected at birth and were almost totally depleted by 4 months of age. Acquisition of specific antibody isotypes to the antigens began with IgM, followed by IgG1 and IgA. Against the MSP2 antigen, IgG1 but not IgG3 responses were observed in the children, in contrast with the maternally derived antibodies to this antigen that were mostly IgG3. This confirms that IgG subclass responses to MSP2 are strongly dependent on age or previous malaria experience, polarized towards IgG1 early in life and to IgG3 in older exposed individuals

    The Yang Lee Edge Singularity on Feynman Diagrams

    Get PDF
    We investigate the Yang-Lee edge singularity on non-planar random graphs, which we consider as the Feynman Diagrams of various d=0 field theories, in order to determine the value of the edge exponent. We consider the hard dimer model on phi3 and phi4 random graphs to test the universality of the exponent with respect to coordination number, and the Ising model in an external field to test its temperature independence. The results here for generic (``thin'') random graphs provide an interesting counterpoint to the discussion by Staudacher of these models on planar random graphs.Comment: LaTeX, 6 pages + 3 figure

    A Potts/Ising Correspondence on Thin Graphs

    Full text link
    We note that it is possible to construct a bond vertex model that displays q-state Potts criticality on an ensemble of phi3 random graphs of arbitrary topology, which we denote as ``thin'' random graphs in contrast to the fat graphs of the planar diagram expansion. Since the four vertex model in question also serves to describe the critical behaviour of the Ising model in field, the formulation reveals an isomorphism between the Potts and Ising models on thin random graphs. On planar graphs a similar correspondence is present only for q=1, the value associated with percolation.Comment: 6 pages, 5 figure

    Thin Animals

    Full text link
    Lattice animals provide a discretized model for the theta transition displayed by branched polymers in solvent. Exact graph enumeration studies have given some indications that the phase diagram of such lattice animals may contain two collapsed phases as well as an extended phase. This has not been confirmed by studies using other means. We use the exact correspondence between the q --> 1 limit of an extended Potts model and lattice animals to investigate the phase diagram of lattice animals on phi-cubed random graphs of arbitrary topology (``thin'' random graphs). We find that only a two phase structure exists -- there is no sign of a second collapsed phase. The random graph model is solved in the thermodynamic limit by saddle point methods. We observe that the ratio of these saddle point equations give precisely the fixed points of the recursion relations that appear in the solution of the model on the Bethe lattice by Henkel and Seno. This explains the equality of non-universal quantities such as the critical lines for the Bethe lattice and random graph ensembles.Comment: Latex, 10 pages plus 6 ps/eps figure
    • …
    corecore