79 research outputs found
Recommended from our members
Redox and mixed valence in some solid state systems
The silver amalgamation process whereby silver sulphide ore is converted to silver metal using copper chlorides and mercury proceeds through a redox process. The process involves the transformation of Ag2S to AgCl with a corresponding reduction of copper from Cu2+ to Cu+ and subsequent oxidation of Cu+ to Cu2+ by atmospheric oxygen. The AgCl is then reduced to Ag by mercury to form an amalgam. It has been found that the process proceeds similarly when iron replaces copper and involves a reduction of Fe3+ to Fe2+.
The doping of SrFe12O19 by europium and lanthanum to form compounds of the type Sr1-xMxFe12O19 (M=Eu,La) has been achieved by three different methods, the calcination of oxides at 1250°C, calcination of a gel at 925°C, and hydrothermal processing of metal nitrates at 220°C. X-ray powder diffraction (XRD) indicates the formation of similar materials by each method. X-ray absorption fine structure (XAFS) has shown that the La3+ ions substitute for Sr2+ ions. The particle sizes of the Sr1-xMxFe12O19phase have been found by Scherrer analysis of the X-ray powder diffraction data to increase with the temperature involved in the synthesis method. The results show that the materials formed by the calcination of oxides have a size ~800 nm, while those made by hydrothermal processing are ~300 nm.
57Fe Mössbauer spectra collected at various temperatures have shown that the dopant has negligible effect on the magnetic properties of the system. The results show a gradual coalescence of hyper fine fields as the temperature is decreased from 298K to 25K. Magnetic susceptibility measurements have shown that Eu- and La-doped SrFe12O19 prepared by the co-precipitation of a gel has a greater magnetic coercivity than those prepared by other methods
Radiation effects in Zr and Hf containing garnets
Garnets have been considered as host phases for the safe immobilisation of high-level nuclear waste, as they have been shown to accommodate a wide range of elements across three different cation sites, such as Ca, Y, Mn on the a-site, Fe, Al, U, Zr, and Ti on the b-site, and Si, Fe, Al on the c-site. Garnets, due to their ability to have variable composition, make ideal model materials for the examination of radiation damage and recovery in nuclear materials, including as potential waste forms. Kimzeyite, Ca3Zr2FeAlSiO12, has been shown naturally to contain up to 30 wt% Zr, and has previously been examined to elucidate both the structure and ordering within the lattice. This study examines the effects of radiation damage and recovery using in-situ ion beam irradiation with 1 MeV Kr ions at the IVEM-TANDEM facility, Argonne National Laboratory. The complementary Hf containing system Ca3Hf2FeAlSiO12 was also examined, and found to have a different response to irradiation damage. A sample of irradiated Ca3Zr2FeAlSiO12, at 1000 K, was characterised using aberration corrected (S)TEM and found to contain discreet, nano-sized, crystalline Fe rich particles, indicating a competing process during recovery is occurring
Phase distribution, composition and disorder in Y2(Hf,Sn)2O7 ceramics : insights from solid-state NMR spectroscopy and first-principles calculations
The authors would like to thank the ERC (EU FP7 Consolidator Grant 614290 “‘EXONMR’”), and EPSRC for support for SS and ASG (EP/L005581/1). SEA would like to thank the Royal Society and Wolfson Foundation for a merit award. We acknowledge support from the Collaborative Computational Project on NMR Crystallography CCP-NC funded by EPSRC (EP/M022501/1).A NMR crystallographic approach, combining 89Y, 119Sn and 17O NMR spectroscopy with X-ray diffraction and first-principles calculations has been used investigate the number and type of phases present, and the local structure and disorder in Y2Hf2–xSnxO7 ceramics. Although a phase change is predicted with increasing Hf content, NMR spectra clearly show the presence of a significant two-phase region, with a Sn-rich pyrochlore and relatively Hf-rich defect fluorite phase co-existing for much of the compositional series. A single-phase pyrochlore is found only for the Sn end member, and a single defect fluorite phase only for x = 0 to 0.2. A solid-solution limit of ~10% is seen for the substitution of Hf into Y2Sn2O7, although no evidence is seen for any cation ordering or antisite disorder in this phase. In the defect fluorite phase there is preferential ordering of oxygen vacancies around Sn, which is only ever seen in a six-coordinate environment. The remaining vacancies are more likely to be associated with Hf than with Y, although this distinction is less apparent at higher Sn concentrations. To acquire 17O NMR spectra samples were post-synthetically exchanged with 17O2(g), although high temperatures (> 900 ºC) were required to ensure uniform enrichment of different chemical species. although these 17O NMR spectra confirm the formation of mixed-metal materials and the presence of two phases, more quantitative analysis is hindered by the overlap of signals from pyrochlore and defect fluorite phases. In all cases, DFT calculations play a vital role in the interpretation and assignment of the NMR spectra, and in understanding the local structure and disorder in these complex multi-phase materials.PostprintPostprintPeer reviewe
New insights into phase distribution, phase composition and disorder in Y2(Zr,Sn) 2O7 ceramics from NMR spectroscopy
A combination of 89Y and 119Sn NMR spectroscopy and DFT calculations are used to investigate phase evolution, local structure and disorder in Y2Zr2−xSnxO7 ceramics, where a phase change is predicted, from pyrochlore to defect fluorite, with increasing Zr content. The ability of NMR to effectively probe materials that exhibit positional and compositional disorder provides insight into the atomic-scale structure in both ordered and disordered phases and, by exploiting the quantitative nature of the technique, we are able to determine detailed information on the composition of the phase(s) present and the average coordination number (and next-nearest neighbour environment) of the cations. In contrast to previous studies, a more complex picture of the phase variation with composition emerges, with single-phase pyrochlore found only for the Sn end member, and a single defect fluorite phase only for x = 0 to 0.6. A broad two-phase region is observed, from x = 1.8 to 0.8, but the two phases present have very different composition, with a maximum of 13% Zr incorporated into the pyrochlore phase, whereas the composition of the defect fluorite phase varies throughout. Preferential ordering of the anion vacancies in the defect fluorite phase is observed, with Sn only ever found in a six-coordinate environment, while remaining vacancies are shown to be more likely to be associated with Zr than Y. Our findings are then discussed in the light of those from previous studies, many of which utilize diffraction-based approaches, where, in most cases, a single phase of fixed composition has been assumed for the refinement procedure. The significant and surprising differences encountered demonstrate the need for complementary approaches to be considered for a detailed and accurate picture of both the long- and short-range structure of a solid to be achieved
Recommended from our members
Synthesis of Prussian blue-embedded porous polymer for detection and removal of Cs ions
A Prussian blue (PB)-embedded coordination polymer (COP) was prepd. by simple incorporation of PB into a COP composed of 1,1,2,2-tetrakis(4-carboxyphenyl)ethane and the Zn ion during the synthesis of COP. The PB-COP was prepd. as micro-sized particles with green emission (490 nm) from the strongly fluorescent tetraphenylethene group in the solid state through aggregation-induced emission. The PB-COP showed particle shape with sizes ranging from 1 to 6 μm. As the PB in PB-COP efficiently adsorbed Cs ions, the microstructure of PB-COP was degraded to smaller particles, along with a concomitant decrease in the green fluorescence of the PB-COP. Such a decrease in the green emission of PB-COP was used as a signal for the presence of Cs ions, in which the limit of detection for Cs ions was found to be 73.8 ppb. The hybridized material of the PB-COP can be used as both an efficient adsorbent and a sensor for Cs ions, achieving simultaneous removal and detection
Recommended from our members
Cobalt and nickel uptake by silica-based extractants
The pKas of ethyl/butyl phosphonate silica (EBP-Si) have been determined, and the removal of cobalt and nickel from solution was investigated as a function of various parameters and compared with those of Purolite S950. pH uptake experiments suggested a combination of ion exchange and acid dissociation of the surface occurring. Isotherm data, fitted using the Langmuir and Dubinin–Radushkevich (D-R) models, indicated that stronger complexes formed with S950 than with EBP-Si. Kinetic data, fitted using a pseudo-second-order model, suggested that the rate-determining process is the reaction of metal ions with the chelating functionality of the resin. Uptake by EBP-Si is two to three times faster than that on S950
Characterization of Ordering in A-Site Deficient Perovskite Ca1-xLa2x/3TiO3 Using STEM/EELS
The vacancy ordering behavior of an A-site deficient perovskite system, Ca1-xLa2x/3TiO3, was studied using atomic resolution scanning transmission electron microscopy (STEM) in conjunction with electron energy-loss spectroscopy (EELS), with the aim of determining the role of A-site composition changes. At low La content (x = 0.2), adopting Pbnm symmetry, there was no indication of long-range ordering. Domains, with clear boundaries, were observed in bright-field (BF) imaging, but were not immediately visible in the corresponding high-angle annular dark-field (HAADF) image. These boundaries, with the aid of displacement maps from A-site cations in the HAADF signal, are shown to be tilt boundaries. At the La-rich end of the composition (x = 0.9), adopting Cmmm symmetry, long-range ordering of vacancies and La3+ ions was observed, with alternating La-rich and La-poor layers on (001)p planes, creating a double perovskite lattice along the c axis. These highly ordered domains can be found isolated within a random distribution of vacancies/La3+, or within a large population, encompassing a large volume. In regions with a high number density of double perovskite domains, these highly ordered domains were separated by twin boundaries, with 90° or 180° lattice rotations across boundaries. The occurrence and characteristics of these ordered structures are discussed and compared with similar perovskite systems
Resistance to amorphisation in Ca1-xLa2x/3TiO3 perovskites – a bulk ion-irradiation study
The changes induced from 1 MeV Kr+ and 5 MeV Au+ ion irradiation at room temperature have been utilised to determine the impact of cation vacancies on the radiation damage response of bulk Ca1-xLa2x/3TiO3 perovskite structured ceramics. Perovskite systems have long been considered as candidate waste forms for the disposition of actinide wastes, and doping with multi-valent elements such as Pu may lead to cation deficiency. Based on GAXRD and TEM analysis, two regions of resistance/susceptibility to amorphisation have been confirmed with reference to CaTiO3. Increased resistance to amorphisation has been observed for 0.1 ≤ x ≤ 0.4, with an increased susceptibility to amorphisation for x ≥ 0.5. It is proposed that these processes are induced by enhanced recovery from radiation damage for 0.1 ≤ x ≤ 0.4, and reduced tolerance for disorder/the increasingly covalent nature of the A-O bond for x ≥ 0.5. Lattice parameter analysis of the x = 0 and 0.5 samples showed a saturation in radiation damage induced volume swelling at 4.7 ± 0.1% and 1.8 ± 0.1%, respectively, while the saturation limit for the b parameter was lower than the respective a and c orthorhombic parameters. In the x = 0.2 and 0.4 samples, amorphisation was not observed, however the b parameter was found to swell to a lesser extent than the a and c parameters. Swelling was not observed for the ion irradiated x ≥ 0.6 samples
Comparison of a new mass-concentration, chain-reaction model with the population-balance model for early- and late-stage aggregation of shattered graphene oxide nanoparticles
Aggregation as an essential mechanism impacting nanoparticle (NP) functionality, fate, and transport in the environment is currently modelled using population-balance equation (PBE) models which are computationally expensive when combined with other continuum-scale reactive transport models. We propose a new simple mass-concentration-based, chain-reaction modelling (CRM) framework to alleviate computational expenses of PBE and potentially to facilitate combination with other fate, transport, and reaction models. Model performance is compared with analytical PBE solution and a standard numerical PBE technique (fixed pivot, FP) by fitting against experimental data (i.e., hydrodynamic diameter and derived count rate of dynamic light scattering used as a representative of mass concentration) for early- and late-stage, aggregation of shattered graphene oxide (SGO) NP across a broad range of solution chemistries. In general, the CRM approach demonstrates a better match with the experimental data with a mean Nash-Sutcliffe model efficiency (NSE) coefficient of 0.345 than the FP model with a mean NSE of 0.29. Comparing model parameters (aggregation rate constant and fractal dimension) obtained from fitting CRM and FP to the experimental data, similar trends or ranges are obtained between the two approaches. Computationally, the modified CRM is an order-of-magnitude faster than the FP technique, suggesting that it can be a promising modelling framework for efficient and accurate modelling of NP aggregation. However, in the scope of this study, reaction rate coefficients of the CRM have been linked to collision frequencies based on simplified and empirical relationships which need improvement in future studies
Robust estimation of bacterial cell count from optical density
Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
- …