2,156 research outputs found

    Investment in Renewable Energy: Accounting for Climate Change

    Get PDF

    HSV suppression reduces seminal HIV-1 levels in HIV-1/HSV-2 co-infected men who have sex with men.

    Get PDF
    OBJECTIVES: Suppressive herpes simplex virus (HSV) therapy can decrease plasma, cervical, and rectal HIV-1 levels in HIV-1/HSV-2 co-infected persons. We evaluated the effect of HSV-2 suppression on seminal HIV-1 levels. DESIGN: Twenty antiretroviral therapy (ART)-naive HIV-1/HSV-2 men who have sex with men (MSM) in Lima, Peru, with CD4 >200 cells/microl randomly received valacyclovir 500 mg twice daily or placebo for 8 weeks, then the alternative regimen for 8 weeks after a 2-week washout. Peripheral blood and semen specimens were collected weekly. Anogenital swab specimens for HSV DNA were self-collected daily and during clinic visits. METHODS: HIV-1 RNA was quantified in seminal and blood plasma by TaqMan real-time polymerase chain reaction (RT-PCR) or Roche Amplicor Monitor assays. HSV and seminal cytomegalovirus (CMV) were quantified by RT-PCR. Linear mixed models examined differences within participants by treatment arm. RESULTS: Median CD4 cell count of participants was 424 cells/microl. HIV-1 was detected in 71% of 231 semen specimens. HSV was detected from 29 and 4.4% of swabs on placebo and valacyclovir, respectively (P < 0.001). Valacyclovir significantly reduced the proportion of days with detectable seminal HIV-1 (63% during valacyclovir vs. 78% during placebo; P = 0.04). Seminal HIV-1 quantity was 0.25 log10 copies/ml lower [95% confidence interval (CI) -0.40 to -0.10; P = 0.001] during the valacyclovir arm compared with placebo, a 44% reduction. CD4 cell count (P = 0.32) and seminal cellular CMV quantity (P = 0.68) did not predict seminal plasma HIV-1 level. CONCLUSIONS: Suppressive valacyclovir reduced seminal HIV-1 levels in HIV-1/HSV-2 co-infected MSM not receiving ART. The significance of this finding will be evaluated in a trial with HIV-1 transmission as the outcome

    Self-avoiding walks crossing a square

    Full text link
    We study a restricted class of self-avoiding walks (SAW) which start at the origin (0, 0), end at (L,L)(L, L), and are entirely contained in the square [0,L]×[0,L][0, L] \times [0, L] on the square lattice Z2{\mathbb Z}^2. The number of distinct walks is known to grow as λL2+o(L2)\lambda^{L^2+o(L^2)}. We estimate λ=1.744550±0.000005\lambda = 1.744550 \pm 0.000005 as well as obtaining strict upper and lower bounds, 1.628<λ<1.782.1.628 < \lambda < 1.782. We give exact results for the number of SAW of length 2L+2K2L + 2K for K=0,1,2K = 0, 1, 2 and asymptotic results for K=o(L1/3)K = o(L^{1/3}). We also consider the model in which a weight or {\em fugacity} xx is associated with each step of the walk. This gives rise to a canonical model of a phase transition. For x<1/μx < 1/\mu the average length of a SAW grows as LL, while for x>1/μx > 1/\mu it grows as L2L^2. Here μ\mu is the growth constant of unconstrained SAW in Z2{\mathbb Z}^2. For x=1/μx = 1/\mu we provide numerical evidence, but no proof, that the average walk length grows as L4/3L^{4/3}. We also consider Hamiltonian walks under the same restriction. They are known to grow as τL2+o(L2)\tau^{L^2+o(L^2)} on the same L×LL \times L lattice. We give precise estimates for τ\tau as well as upper and lower bounds, and prove that τ<λ.\tau < \lambda.Comment: 27 pages, 9 figures. Paper updated and reorganised following refereein

    Statistics of nested spiral self-avoiding loops: exact results on the square and triangular lattices

    Full text link
    The statistics of nested spiral self-avoiding loops, which is closely related to the partition of integers into decreasing parts, is studied on the square and triangular lattices.Comment: Old paper, for archiving. 7 pages, 2 figures, epsf, IOP macr
    corecore