114 research outputs found
The Anode Challenge for Lithium-Ion Batteries: A Mechanochemically Synthesized Sn-Fe-C Composite Anode Surpasses Graphitic Carbon
Carbon-based anodes are the key limiting factor in increasing the volumetric capacity of lithium-ion batteries. Tin-based composites are one alternative approach. Nanosized Sn-Fe-C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthesis conditions are found to be 1:0.25:10 for initial ratio of SnO, Ti, and graphite with a total grinding time of 8 h. This optimized composite shows excellent extended cycling at the C/10 rate, delivering a first charge capacity as high as 740 mAh g(-1) and 60% of which still remained after 170 cycles. The calculated volumetric capacity significantly exceeds that of carbon. It also exhibits excellent rate capability, delivering volumetric capacity higher than 1.6 Ah cc(-1) over 140 cycles at the 1 C rate
Recommended from our members
How Bulk Sensitive is Hard X-ray Photoelectron Spectroscopy: Accounting for the Cathode-Electrolyte Interface when Addressing Oxygen Redox.
Sensitivity to the "bulk" oxygen core orbital makes hard X-ray photoelectron spectroscopy (HAXPES) an appealing technique for studying oxygen redox candidates. Various studies have reported an additional O 1s peak (530-531 eV) at high voltages, which has been considered a direct signature of the bulk oxygen redox process. Here, we find the emergence of a 530.4 eV O 1s HAXPES peak for three model cathodes-Li2MnO3, Li-rich NMC, and NMC 442-that shows no clear link to oxygen redox. Instead, the 530.4 eV peak for these three systems is attributed to transition metal reduction and electrolyte decomposition in the near-surface region. Claims of oxygen redox relying on photoelectron spectroscopy must explicitly account for the surface sensitivity of this technique and the extent of the cathode degradation layer
A high-performance solid-state synthesized LiVOPO4 for lithium-ion batteries
Funding Information: This research was funded by U.S. Department of Energy , Office of Energy Efficiency and Renewable Energy (EERE) program under BMR award no. DE-EE0006852 . The structural characterization using NMR and PDF techniques was supported by the NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center supported by the U.S. Department of Energy , Office of Science, Office of Basic Energy Sciences under award no. DE-SC0012583 . This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank Dr. Fengxia Xin for help with TG-MS data acquisition, and Drs. Jatinkumar Rana and Jia Ding, for many helpful discussions. Funding Information: This research was funded by U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) program under BMR award no. DE-EE0006852. The structural characterization using NMR and PDF techniques was supported by the NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0012583. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank Dr. Fengxia Xin for help with TG-MS data acquisition, and Drs. Jatinkumar Rana and Jia Ding, for many helpful discussions. Publisher Copyright: © 2019 The AuthorsPeer reviewe
Lithium cobalt(II) pyrophosphate, Li1.86CoP2O7, from synchrotron X-ray powder data
Structure refinement of high-resolution X-ray powder diffraction data of the title compound gave the composition Li1.865CoP2O7, which is also verified by the ICP measurement. Two Co sites exist in the structure: one is a CoO5 square pyramid and the other is a CoO6 octaÂhedron. They share edges and are further interÂconnected through P2O7 groups, forming a three-dimensional framework, which exhibits different kinds of interÂsecting tunnels containing Li cations and could be of great interÂest in Li ion battery chemistry. The structure also exhibits cation disorder with 13.5% Co residing at the lithium (Li1) site. Co seems to have an average oxidation state of 2.135, as obtained from the strutural stochiometry that closely supports the magnetic susceptibility findings
Nanotechnology for environmentally sustainable electromobility
Electric vehicles (EVs) powered by lithium-ion batteries (LIBs) or proton exchange membrane hydrogen fuel cells (PEMFCs) offer important potential climate change mitigation effects when combined with clean energy sources. The development of novel nanomaterials may bring about the next wave of technical improvements for LIBs and PEMFCs. If the next generation of EVs is to lead to not only reduced emissions during use but also environmentally sustainable production chains, the research on nanomaterials for LIBs and PEMFCs should be guided by a life-cycle perspective. In this Analysis, we describe an environmental life-cycle screening framework tailored to assess nanomaterials for electromobility. By applying this framework, we offer an early evaluation of the most promising nanomaterials for LIBs and PEMFCs and their potential contributions to the environmental sustainability of EV life cycles. Potential environmental trade-offs and gaps in nanomaterials research are identified to provide guidance for future nanomaterial developments for electromobility
The role of off-board EV battery chargers in smart homes and smart grids: operation with renewables and energy storage systems
Concerns about climate changes and environmental air pollution are leading to the adoption of new technologies for transportation, mainly based on vehicle electrification and the interaction with smart grids, and also with the introduction of renewable energy sources (RES) accompanied by energy storage systems (ESS). For these three fundamental pillars, new power electronics technologies are emerging to transform the electrical power grid, targeting a flexible and collaborative operation. As a distinctive factor, the vehicle electrification has stimulated the presence of new technologies in terms of power management, both for smart homes and smart grids. As the title indicates, this book chapter focuses on the role of off-board EV battery chargers in terms of operation modes and contextualization for smart homes and smart grids in terms of opportunities. Based on a review of on-board and off-board EV battery charging systems (EV-BCS), this chapter focus on the off-board EV-BCS framed with RES and ESS as a dominant system in future smart homes. Contextualizing these aspects, three distinct cases are considered: (1) An ac smart home using separate power converters, according to the considered technologies; (2) A hybrid ac and dc smart home with an off-board EV-BCS interfacing RES and ESS, and with the electrical appliances plugged-in to the ac power grid; (3) A dc smart home using a unified
2
off-board EV-BCS with a single interface for the electrical power grid, and with multiple dc interfaces (RES, ESS, and electrical appliances). The results for each case are obtained in terms of efficiency and power quality, demonstrating that the off-board EV-BCS, as a unified structure for smart homes, presents better results. Besides, the off-board EV-BCS can also be used as an important asset for the smart grid, even when the EV is not plugged-in at the smart home.(undefined
- âŠ