462 research outputs found

    Ultracold homonuclear and heteronuclear collisions in metastable helium

    Full text link
    Scattering and ionizing cross sections and rates are calculated for ultracold collisions between metastable helium atoms using a fully quantum-mechanical close-coupled formalism. Homonuclear collisions of the bosonic 4{}^{4}He∗+4^{*} +{}^{4}He∗^{*} and fermionic 3{}^{3}He∗+3^{*} + {}^{3}He∗^{*} systems, and heteronuclear collisions of the mixed 3{}^{3}He∗+4^{*} +{}^{4}He∗^{*} system, are investigated over a temperature range 1 μ\muK to 1 K. Carefully constructed Born-Oppenheimer molecular potentials are used to describe the electrostatic interaction between the colliding atoms, and complex optical potentials used to represent loss through ionization from the 1,3Σ{}^{1,3}\Sigma states. Magnetic spin-dipole mediated transitions from the 5Σ{}^{5}\Sigma state are included and results reported for spin-polarized and unpolarized systems. Comparisons are made with experimental results, previous semi-classical models, and a perturbed single channel model.Comment: 14 pages, 9 figure

    Ultracold collisions of metastable helium atoms

    Get PDF
    We report scattering lengths for the singlet Sigma g +, triplet Sigma u + and quintet Sigma g + adiabatic molecular potentials relevant to collisions of two metastable (n=2 triplet S) helium atoms as a function of the uncertainty in these potentials. These scattering lengths are used to calculate experimentally observable scattering lengths, elastic cross sections and inelastic rates for any combination of states of the colliding atoms, at temperatures where the Wigner threshold approximation is valid.Comment: 20 pages, 8 figures, RevTeX, epsf. Small additions of tex

    Gluon and gluino penguin diagrams and the charmless decays of the b quark

    Get PDF
    Gluon mediated exclusive hadronic decays of b quarks are studied within the standard model (SM) and the constrained minimally supersymmetric standard model (MSSM). For all allowed regions of the MSSM parameter space (A, tan beta, m_0, m_{1/2}) the penguin magnetic dipole form factor F^R_2 is dominant over the electric dipole and can be larger than the magnetic dipole form factor of the SM. However, overall the SM electric dipole decay amplitude F^L_1 dominates the decay rate. The MSSM penguin contributions to the free quark decay rate approach the 10% level for those regions of parameter space close to the highest allowed values of tan beta (~55) for which the gluino is light (m_{\tilde{g}} \approx 360 GeV) and lies within the range of the six d-squark masses. In these regions the supersymmetric box amplitudes are negligible. The MSSM phases change very little over the allowed parameter space and can lead to significant interference with the SM amplitudes

    Factorization fits to charmless strangeless B decays

    Full text link
    We present fits to charmless strangeless hadronic B decay data for mean branching ratios and CP-violating asymmetries using the QCD factorization model of Beneke et al. Apart from one CP-violating parameter, the model gives a very good representation of 26 measured data. We find the CKM angle alpha = (93.5 +/- 8.4 -1.3) degrees and to be quite stable to plausible "charming penguin" corrections.Comment: 4 pages, LaTeX, Minor changes to text, references adde

    Symmetry improvement of 3PI effective actions for O(N) scalar field theory

    Full text link
    [Abridged] n-Particle Irreducible Effective Actions (nnPIEA) are a powerful tool for extracting non-perturbative and non-equilibrium physics from quantum field theories. Unfortunately, practical truncations of nnPIEA can unphysically violate symmetries. Pilaftsis and Teresi (PT) addressed this by introducing a "symmetry improvement" scheme in the context of the 2PIEA for an O(2) scalar theory, ensuring that the Goldstone boson is massless in the broken symmetry phase [A. Pilaftsis and D. Teresi, Nuc.Phys. B 874, 2 (2013), pp. 594--619]. We extend this by introducing a symmetry improved 3PIEA for O(N) theories, for which the basic variables are the 1-, 2- and 3-point correlation functions. This requires the imposition of a Ward identity involving the 3-point function. The method leads to an infinity of physically distinct schemes, though an analogue of d'Alembert's principle is used to single out a unique scheme. The standard equivalence hierarchy of nnPIEA no longer holds with symmetry improvement and we investigate the difference between the symmetry improved 3PIEA and 2PIEA. We present renormalized equations of motion and counter-terms for 2 and 3 loop truncations of the effective action, leaving their numerical solution to future work. We solve the Hartree-Fock approximation and find that our method achieves a middle ground between the unimproved 2PIEA and PT methods. The phase transition predicted by our method is weakly first order and the Goldstone theorem is satisfied. We also show that, in contrast to PT, the symmetry improved 3PIEA at 2 loops does not predict the correct Higgs decay rate, but does at 3 loops. These results suggest that symmetry improvement should not be applied to nnPIEA truncated to <n<n loops. We also show that symmetry improvement is compatible with the Coleman-Mermin-Wagner theorem, a check on the consistency of the formalism.Comment: 27 pages, 15 figures, 2 supplemental Mathematica notebooks. REVTeX 4.1 with amsmath. Updated with minor corrections. Accepted for publication in Phys. Rev.

    Purely-long-range bound states of He(2s3S)+(2s ^3S)+He(2p3P)(2p ^3P)

    Full text link
    We predict the presence and positions of purely-long-range bound states of 4^4He(2s3S)+4(2s ^3S)+{}^4He(2p3P)(2p ^3P) near the 2s3S1+2p3P0,12s ^3S_1+2p ^3P_{0,1} atomic limits. The results of the full multichannel and approximate models are compared, and we assess the sensitivity of the bound states to atomic parameters characterizing the potentials. Photoassociation to these purely-long-range molecular bound states may improve the knowledge of the scattering length associated with the collisions of two ultracold spin-polarized 4^4He(2s3S)(2s ^3S) atoms, which is important for studies of Bose-Einstein condensates.Comment: 16 pages, 5 figure

    Developing Objective Metrics for Unit Staffing (DOMUS) study

    Get PDF
    OBJECTIVE: Safe midwifery staffing levels on delivery suites is a priority area for any maternity service. Escalation policies are tools that provide an operational response to emergency pressures. The aim of this study was to assess the feasibility of using a scoring system to contemporaneously assess the required staffing level based on demand and use this to determine delivery suite escalation level and utilise the information generated regarding clinical activity (Demand) and staffing levels (Capacity) to generate unit-specific calculation for the actual number of midwifery staff required. SETTING: A maternity unit of a university-affiliated tertiary referral hospital. DESIGN: Over a 12-month period, specifically designed scoring sheets were completed by delivery suite shift co-ordinators four times a day (04:00, 10:00, 16:00 and 22:00). Based on the dependency score (Demand) and the number of midwifery staff available (Capacity), an escalation level was determined for each shift. The 80th centile of the demand was used to determine optimal capacity. RESULTS: A total of 1160 scoring sheets were completed. Average staff number throughout the year on any shift was 7 (range 3–11). Average dependency score was 7 (range 1–14). The 80th centile for demand was calculated to be 11. CONCLUSIONS: This study stresses the importance and usefulness of a simple tool that can be used to determine the level of escalation on delivery suite based on an objective scoring system and can also be used to determine the appropriate staffing on delivery suite

    Predicting mental imagery based BCI performance from personality, cognitive profile and neurophysiological patterns

    Get PDF
    Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy— EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user
    • …
    corecore