224 research outputs found
A Catalog of Background Stars Reddened by Dust in the Taurus Dark Clouds
Normal field stars located behind dense clouds are a valuable resource in
interstellar astrophysics, as they provide continua in which to study phenomena
such as gas-phase and solid-state absorption features, interstellar extinction
and polarization. This paper reports the results of a search for highly
reddened stars behind the Taurus Dark Cloud complex. We use the Two Micron All
Sky Survey (2MASS) Point Source Catalog to survey a 50 sq deg area of the cloud
to a limiting magnitude of K = 10.0. Photometry in the 1.2-2.2 micron passbands
from 2MASS is combined with photometry at longer infrared wavelengths (3.6-12
micron) from the Spitzer Space Telescope and the Infrared Astronomical
Satellite to provide effective discrimination between reddened field stars and
young stellar objects (YSOs) embedded in the cloud. Our final catalog contains
248 confirmed or probable background field stars, together with estimates of
their total visual extinctions, which span the range 2-29 mag. We also identify
the 2MASS source J04292083+2742074 (IRAS 04262+2735) as a previously
unrecognized candidate YSO, based on the presence of infrared emission greatly
in excess of that predicted for a normal reddened photosphere at wavelengths >5
microns
Non-LTE dust nucleation in sub-saturated vapors
We use the kinetic theory of nucleation to explore the properties of dust
nucleation in sub-saturated vapors. Due to radiation losses, the sub-critical
clusters have a smaller temperature compared to their vapor. This alters the
dynamical balance between attachment and detachment of monomers, allowing for
stable nucleation of grains in vapors that are sub-saturated for their
temperature. We find this effect particularly important at low densities and in
the absence of a strong background radiation field. We find new conditions for
stable nucleation in the n-T phase diagram. The nucleation in the non-LTE
regions is likely to be at much slower rate than in the super-saturated vapors.
We evaluate the nucleation rate, warning the reader that it does depend on
poorly substantiated properties of the macro-molecules assumed in the
computation. On the other hand, the conditions for nucleation depend only on
the properties of the large stable grains and are more robust. We finally point
out that this mechanism may be relevant in the early universe as an initial
dust pollution mechanism, since once the interstellar medium is polluted with
dust, mantle growth is likely to be dominant over non-LTE nucleation in the
diffuse medium.Comment: 8 pages, 8 figures, accepted for publication in MNRA
The Efficiency of Grain Alignment in Dense Interstellar Clouds: A Reassessment of Constraints from Near Infrared Polarization
A detailed study of interstellar polarization efficiency toward molecular
clouds is used to attempt discrimination between grain alignment mechanisms in
dense regions of the ISM. Background field stars are used to probe polarization
efficiency in quiescent regions of dark clouds, yielding a dependence on visual
extinction well-represented by a power law. No significant change in this
behavior is observed in the transition region between the diffuse outer layers
and dense inner regions of clouds, where icy mantles are formed, and we
conclude that mantle formation has little or no effect on the efficiency of
grain alignment. Young stellar objects generally exhibit greater polarization
efficiency compared with field stars at comparable extinctions, displaying
enhancements by factors of up to 6. Of the proposed alignment mechanisms, that
based on radiative torques appears best able to explain the data. The
attenuated external radiation field accounts for the observed polarization in
quiescent regions, and radiation from the embedded stars themselves may enhance
alignment in the lines of sight to YSOs. Enhancements in polarization
efficiency observed in the ice features toward several YSOs are of greatest
significance, as they demonstrate efficient alignment in cold molecular clouds
associated with star formation
Prospects for multiwavelength polarization observations of GRB afterglows and the case GRB 030329
We explore the prospects for simultaneous, broad-band, multiwavelength
polarimetric observations of GRB afterglows. We focus on the role of cosmic
dust in GRB host galaxies on the observed percentage polarization of afterglows
in the optical/near-infrared bands as a function of redshift. Our driving point
is the afterglow of GRB 030329, for which we obtained polarimetric data in the
R band and K band simultaneously about 1.5 days after the burst. We argue that
polarimetric observations can be very sensitive to dust in a GRB host, because
dust can render the polarization of an afterglow wavelength-dependent. We
discuss the consequences for the interpretation of observational data and
emphasize the important role of very early polarimetric follow-up observations
in all bands, when afterglows are still bright, to study the physical
properties of dust and magnetic fields in high-z galaxies.Comment: accepted for publication in Astronomy & Astrophysic
V1647 Ori (IRAS 05436-0007) in Outburst: the First Three Months
We report on photometric (BVRIJHK) and low dispersion spectroscopic
observations of V1647 Ori, the star that drives McNeil's Nebula, between 10
February and 7 May 2004. The star is photometrically variable atop a general
decline in brightness of about 0.3-0.4 magnitudes during these 87 days. The
spectra are featureless, aside from H-alpha and the Ca II infrared triplet in
emission, and a Na I D absorption feature. The Ca II triplet line ratios are
typical of young stellar objects. The H-alpha equivalent width may be modulated
on a period of about 60 days. The post-outburst extinction appears to be less
than 7 mag. The data are suggestive of an FU Orionis-like event, but further
monitoring will be needed to definitively characterize the outburst.Comment: Accepted for publication in the Astronomical Journa
The Warm Ionized Medium in the Milky Way and Other Galaxies
Observations of the "Warm Ionized Medium" (or, equivalently, the "Diffuse
Ionized Gas") of the local ISM, the Perseus arm in the Milky Way, and also in
several other galaxies show strong [NII]6563 (~H-alpha in some cases) and
[SII]6717/[NII]6583 = 0.6 - 0.7 in all locations and objects. Other line ratios
(e.g., [O III]5007/H-beta) vary considerably. Simple photoionization models
reproduce the observed spectra, providing extra heating beyond that supplied by
photoionization is assumed (Reynolds, Haffner, & Tufte 1999). With observed
gas-phase abundances (not solar), the line ratios in the local arm at b = 0 deg
are fitted with no extra heating and (S/H) = 13 ppm (solar is 20 ppm). Local
gas observed at b = -35 deg requires extra heating of about gamma = 0.75, where
gamma is the extra heating in units of 10^{-25} erg H^{-1} s^{-1}. In the
Perseus arm, there are similar results, with a domposition consistent with the
Galactic abundance gradient. The requirements for NGC 891 are similar to the
Perseus arm: little or no extra heating at |z| = 1 kpc and gamma 3 at 2 kpc. In
NGC 891 there is also an increase of 5007/H-alpha with |z| that can only come
about if most of the ionizing radiation is supplied by stars with T~50000 K.
Either their radiation must propagate from the plane to high |z| through very
little intervening matter, or else the stars are located at high |z|. The total
power requirement of the extra heating is <15% of the photoionization power.
[O~II]3727/H-beta can serve as a useful diagnostic of extra heating, but
[S~III] 9065,9531/H-alpha is not useful in this regard.Comment: 32 pages, including 2 figures. To appear in November 20 Ap
The Polarizing Power of the Interstellar Medium in Taurus
We present a study of the polarizing power of the dust in cold dense regions
(dark clouds) compared to that of dust in the general interstellar medium
(ISM). Our study uses new polarimetric, optical, and spectral classification
data for 36 stars to carefully study the relation between polarization
percentage (p) and extinction (A_V) in the Taurus dark cloud complex. We find
two trends in our p-A_V study: (1) stars background to the warm ISM show an
increase in p with A_V; and (2) the percentage of polarization of stars
background to cold dark clouds does not increase with extinction. We detect a
break in the p-A_V relation at an extinction 1.3 +/- 0.2 mag, which we expect
corresponds to a set of conditions where the polarizing power of the dust
associated with the Taurus dark clouds drops precipitously. This breakpoint
places important restrictions on the use of polarimetry in studying
interstellar magnetic fields.Comment: 17 pages, 2 figures, to appear in ApJLett, AASTeX was use
Lifting the Veil of Dust from NGC 0959: The Importance of a Pixel-Based 2D Extinction Correction
We present the results of a study of the late-type spiral galaxy NGC 0959,
before and after application of the pixel-based dust extinction correction
described in Tamura et al. 2009 (Paper I). Galaxy Evolution Explorer (GALEX)
far-UV (FUV) and near-UV (NUV), ground-based Vatican Advanced Technology
Telescope (VATT) UBVR, and Spitzer/Infrared Array Camera (IRAC) 3.6, 4.5, 5.8,
and 8.0 micron images are studied through pixel Color-Magnitude Diagrams
(pCMDs) and pixel Color-Color Diagrams (pCCDs). We define groups of pixels
based on their distribution in a pCCD of (B - 3.6 micron) versus (FUV - U)
colors after extinction correction. In the same pCCD, we trace their locations
before the extinction correction was applied. This shows that selecting pixel
groups is not meaningful when using colors uncorrected for dust. We also trace
the distribution of the pixel groups on a pixel coordinate map of the galaxy.
We find that the pixel-based (two-dimensional) extinction correction is crucial
to reveal the spatial variations in the dominant stellar population, averaged
over each resolution element. Different types and mixtures of stellar
populations, and galaxy structures such as a previously unrecognized bar,
become readily discernible in the extinction-corrected pCCD and as coherent
spatial structures in the pixel coordinate map.Comment: 10 pages, LaTeX2e requires 'emulateapj.cls', 'graphicx.sty', and
'natbib.sty' (included), 9 postscript figures, 1 table. Accepted for
publication in AJ
The sub-millimetre evolution of V4334 Sgr (Sakurai's Object)
We report the results of monitoring of V4334 Sgr (Sakurai's Object) at 450
microns and 850 microns with SCUBA on the James Clerk Maxwell Telescope. The
flux density at both wavelengths has increased dramatically since 2001, and is
consistent with continued cooling of the dust shell in which Sakurai's Object
is still enshrouded, and which still dominates the near-infrared emission.
Assuming that the dust shell is optically thin at sub-millimetre wavelengths
and optically thick in the near-infrared, the sub-millimetre data imply a
mass-loss rate during 2003 of ~3.4(+/0.2)E-5 for a gas-to-dust ratio of 75.
This is consistent with the evidence from 1-5micron observations that the
mass-loss is steadily increasing.Comment: 5 pages, 4 eps figures, accepted for publication in MNRA
Low-Mass Star Formation and the Initial Mass Function in the Rho Ophiuchi Cloud Core
We have obtained moderate-resolution (R=800-1200) K-band spectra for ~100
stars within and surrounding the cloud core of rho Oph. We have measured
spectral types and continuum veilings and have combined this information with
results from new deep imaging. The IMF peaks at about 0.4 M_sun and slowly
declines to the hydrogen burning limit with a slope of ~-0.5 in logarithmic
units (Salpeter is +1.35). Our lower limits on the numbers of substellar
objects demonstrate that the IMF probably does not fall more steeply below the
hydrogen burning limit, at least down to ~0.02 M_sun. We then make the first
comparison of mass functions of stars and pre-stellar clumps (Motte, Andre, &
Neri) measured in the same region. The similar behavior of the two mass
functions in rho Oph supports the suggestion of Motte et al. and Testi &
Sargent that the stellar mass function in young clusters is a direct product of
the process of cloud fragmentation. After considering the effect of extinction
on the SED classifications of the sample, we find that ~17% of the rho Oph
stars are Class I, implying ~0.1 Myr for the lifetime of this stage. In spectra
separated by two years, we observe simultaneous variability in the Br gamma
emission and K-band continuum veiling for two stars, where the hydrogen
emission is brighter in the more heavily veiled data. This behavior indicates
that the disk may contribute significantly to continuous K-band emission, in
contrast to the proposal that the infalling envelope always dominates. Our
detection of strong 2 micron veiling (r_K=1-4) in several Class II and III
stars, which should have disks but little envelope material, further supports
this proposition.Comment: 35 pages, 14 figures, accepted to Ap
- …