6 research outputs found

    Interplay between ESR1/PIK3CA codon variants, oncogenic pathway alterations and clinical phenotype in patients with metastatic breast cancer (MBC): Comprehensive circulating tumor DNA (ctDNA) analysis

    Get PDF
    BACKGROUND: although being central for the biology and druggability of hormone-receptor positive, HER2 negative metastatic breast cancer (MBC), ESR1 and PIK3CA mutations are simplistically dichotomized as mutated or wild type in current clinical practice. METHODS: The study analyzed a multi-institutional cohort comprising 703 patients with luminal-like MBC characterized for circulating tumor DNA through next generation sequencing (NGS). Pathway classification was defined based on previous work (i.e., RTK, RAS, RAF, MEK, NRF2, ER, WNT, MYC, P53, cell cycle, notch, PI3K). Single nucleotide variations (SNVs) were annotated for their oncogenicity through OncoKB. Only pathogenic variants were included in the models. Associations among clinical characteristics, pathway classification, and ESR1/PIK3CA codon variants were explored. RESULTS: The results showed a differential pattern of associations for ESR1 and PIK3CA codon variants in terms of co-occurring pathway alterations patterns of metastatic dissemination, and prognosis. ESR1 537 was associated with SNVs in the ER and RAF pathways, CNVs in the MYC pathway and bone metastases, while ESR1 538 with SNVs in the cell cycle pathway and liver metastases. PIK3CA 1047 and 542 were associated with CNVs in the PI3K pathway and with bone metastases. CONCLUSIONS: The study demonstrated how ESR1 and PIK3CA codon variants, together with alterations in specific oncogenic pathways, can differentially impact the biology and clinical phenotype of luminal-like MBC. As novel endocrine therapy agents such as selective estrogen receptor degraders (SERDS) and PI3K inhibitors are being developed, these results highlight the pivotal role of ctDNA NGS to describe tumor evolution and optimize clinical decision making

    Circulating tumour DNA characterisation of invasive lobular carcinoma in patients with metastatic breast cancer

    Get PDF
    BACKGROUND: Limited data exist to characterise molecular differences in circulating tumour DNA (ctDNA) for patients with invasive lobular carcinoma (ILC). We analysed metastatic breast cancer patients with ctDNA testing to assess genomic differences among patients with ILC, invasive ductal carcinoma (IDC), and mixed histology. METHODS: We retrospectively analysed 980 clinically annotated patients (121 ILC, 792 IDC, and 67 mixed histology) from three academic centers with ctDNA evaluation by Guardant360™. Single nucleotide variations (SNVs), copy number variations (CNVs), and oncogenic pathways were compared across histologies. FINDINGS: ILC was significantly associated with HR+ HER2 negative and HER2 low. SNVs were higher in patients with ILC compared to IDC or mixed histology (Mann Whitney U test, P \u3c 0.05). In multivariable analysis, HR+ HER2 negative ILC was significantly associated with mutations in CDH1 (odds ratio (OR) 9.4, [95% CI 3.3-27.2]), ERBB2 (OR 3.6, [95% confidence interval (CI) 1.6-8.2]), and PTEN (OR 2.5, [95% CI 1.05-5.8]) genes. CDH1 mutations were not present in the mixed histology cohort. Mutations in the PI3K pathway genes (OR 1.76 95% CI [1.18-2.64]) were more common in patients with ILC. In an independent cohort of nearly 7000 metastatic breast cancer patients, CDH1 was significantly co-mutated with targetable alterations (PIK3CA, ERBB2) and mutations associated with endocrine resistance (ARID1A, NF1, RB1, ESR1, FGFR2) (Benjamini-Hochberg Procedure, all q \u3c 0.05). INTERPRETATION: Evaluation of ctDNA revealed differences in pathogenic alterations and oncogenic pathways across breast cancer histologies with implications for histologic classification and precision medicine treatment. FUNDING: Lynn Sage Cancer Research Foundation, OncoSET Precision Medicine Program, and UL1TR001422

    Modulation of Breast Cancer Risk Biomarkers by High-Dose Omega-3 Fatty Acids: Phase II Pilot Study in Postmenopausal Women

    Get PDF
    Associational studies suggest higher intakes/blood levels of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid (AA) are associated with reduced breast cancer risk. We performed a pilot study of high-dose EPA + DHA in postmenopausal women to assess feasibility before initiating a phase IIB prevention trial. Postmenopausal women with cytologic evidence of hyperplasia in their baseline random periareolar fine needle aspiration (RPFNA) took 1,860 mg EPA +1500 mg DHA ethyl esters daily for 6 months. Blood and breast tissue were sampled at baseline and study conclusion for exploratory biomarker assessment, wit

    Modulation of Breast Cancer Risk Biomarkers by High-Dose Omega-3 Fatty Acids: Phase II Pilot Study in Postmenopausal Women

    No full text
    Associational studies suggest higher intakes/blood levels of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to the omega-6 arachidonic acid (AA) are associated with reduced breast cancer risk. We performed a pilot study of high-dose EPA + DHA in postmenopausal women to assess feasibility before initiating a phase IIB prevention trial. Postmenopausal women with cytologic evidence of hyperplasia in their baseline random periareolar fine needle aspiration (RPFNA) took 1,860 mg EPA +1500 mg DHA ethyl esters daily for 6 months. Blood and breast tissue were sampled at baseline and study conclusion for exploratory biomarker assessment, wit

    Interplay between ESR1/PIK3CA codon variants, oncogenic pathway alterations and clinical phenotype in patients with metastatic breast cancer (MBC): comprehensive circulating tumor DNA (ctDNA) analysis

    No full text
    Abstract Background although being central for the biology and druggability of hormone-receptor positive, HER2 negative metastatic breast cancer (MBC), ESR1 and PIK3CA mutations are simplistically dichotomized as mutated or wild type in current clinical practice. Methods The study analyzed a multi-institutional cohort comprising 703 patients with luminal-like MBC characterized for circulating tumor DNA through next generation sequencing (NGS). Pathway classification was defined based on previous work (i.e., RTK, RAS, RAF, MEK, NRF2, ER, WNT, MYC, P53, cell cycle, notch, PI3K). Single nucleotide variations (SNVs) were annotated for their oncogenicity through OncoKB. Only pathogenic variants were included in the models. Associations among clinical characteristics, pathway classification, and ESR1/PIK3CA codon variants were explored. Results The results showed a differential pattern of associations for ESR1 and PIK3CA codon variants in terms of co-occurring pathway alterations patterns of metastatic dissemination, and prognosis. ESR1 537 was associated with SNVs in the ER and RAF pathways, CNVs in the MYC pathway and bone metastases, while ESR1 538 with SNVs in the cell cycle pathway and liver metastases. PIK3CA 1047 and 542 were associated with CNVs in the PI3K pathway and with bone metastases. Conclusions The study demonstrated how ESR1 and PIK3CA codon variants, together with alterations in specific oncogenic pathways, can differentially impact the biology and clinical phenotype of luminal-like MBC. As novel endocrine therapy agents such as selective estrogen receptor degraders (SERDS) and PI3K inhibitors are being developed, these results highlight the pivotal role of ctDNA NGS to describe tumor evolution and optimize clinical decision making
    corecore