1,266 research outputs found
Forming the Dusty Ring in HR 4796A
We describe planetesimal accretion calculations for the dusty ring observed
in the nearby A0 star HR 4796A. Models with initial masses of 10-20 times the
minimum mass solar nebula produce a ring of width 7-15 AU and height 0.3-0.6 AU
at 70 AU in roughly 10 Myr. The ring has a radial optical depth of 1. These
results agree with limits derived from infrared images and from the excess
infrared luminosity.Comment: 6 pages, including 2 figures and 1 table; ApJ Letters, in pres
Academic Perspectives on Agribusiness: An International Survey
The IFAMR is published by (IFAMA) the International Food and Agribusiness Management Review. www.ifama.orgpromotion and tenure, agribusiness, teaching, grantsmanship, research, Agribusiness, Institutional and Behavioral Economics, Productivity Analysis, Teaching/Communication/Extension/Profession, Q130,
Measurement of Three Transport Coefficients and the Thermodynamic Factor in Block Copolymer Electrolytes with Different Morphologies.
The design and engineering of composite materials is one strategy to satisfy the materials needs of systems with multiple orthogonal property requirements. In the case of rechargeable batteries with lithium metal anodes, the system requires a separator with fast lithium ion transport and good mechanical strength. In this work, we focus on the system polystyrene-block-poly(ethylene oxide) (SEO) with bis(trifluoromethane)sulfonimide lithium salt (LiTFSI). Ion transport occurs in the salt-containing poly(ethylene oxide)-rich domains. Mechanical rigidity arises due to the glassy nature of polystyrene (PS). If we assume that the salt does not interact with the PS-rich domains, we can describe ion transport in the electrolyte by three transport parameters (ionic conductivity, κ, salt diffusion coefficient, D, and cation transference number, t+0) and a thermodynamic factor, Tf. By systematically varying the volume fraction of the conducting phase, ϕc between 0.29 and 1.0, and chain length, N between 80 and 8000, we elucidate the role of morphology on ion transport. We find that κ is the strongest function of morphology, varying by three full orders of magnitude, while D is a weaker function of morphology. To calculate t+0 and Tf, we measure the current fraction, ρ+, and the open circuit potential, U, of concentration cells. We find that ρ+ and U follow universal trends as a function of salt concentration, regardless of chain length, morphology, or ϕc, allowing us to calculate t+0 for any SEO/LiTFSI or PEO/LiTFSI mixture when κ and D are known. The framework developed in this paper enables predicting the performance of any block copolymer electrolyte in a rechargeable battery
Love at What Price? Estimating the Value of Marriage
Using a law within Social Security that provides clear financial incentives to delay marriage, we estimate the financial value of a month of marriage. Specifically, the law provides that widows who are eligible for Social Security benefits on their deceased spouse\u27s earnings records are eligible for benefits at age 60, unless they remarry before that age. If they remarry before that age, they cannot claim widow benefits and must wait until at least age 62 to claim spousal benefits on their new husband\u27s record, which are typically less generous than widow benefits. To generate an estimate of what this behavior implies about the value of marriage, we use data from five panels of the Survey of Income and Program Participation linked to administrative data from Social Security. We estimate the cost of marrying before age 60 imposed by the Social Security program. We develop a model that reflects the institutional details of Social Security and generate a likelihood function that reflects that model. By taking advantage of the variation in these costs and when or whether widows remarry before age 60, we estimate the benefit of marriage to be $8000/month. These estimates appear to be reasonable in the context of the short length of time widows are willing to wait and the high value of Social Security benefits
Recommended from our members
Nerve-targeted probes for fluorescence-guided intraoperative imaging.
A fundamental goal of many surgeries is nerve preservation, as inadvertent injury can lead to patient morbidity including numbness, pain, localized paralysis and incontinence. Nerve identification during surgery relies on multiple parameters including anatomy, texture, color and relationship to surrounding structures using white light illumination. We propose that fluorescent labeling of nerves can enhance the contrast between nerves and adjacent tissue during surgery which may lead to improved outcomes. Methods: Nerve binding peptide sequences including HNP401 were identified by phage display using selective binding to dissected nerve tissue. Peptide dye conjugates including FAM-HNP401 and structural variants were synthesized and screened for nerve binding after topical application on fresh rodent and human tissue and in-vivo after systemic IV administration into both mice and rats. Nerve to muscle contrast was quantified by measuring fluorescent intensity after topical or systemic administration of peptide dye conjugate. Results: Peptide dye conjugate FAM-HNP401 showed selective binding to human sural nerve with 10.9x fluorescence signal intensity (1374.44 ± 425.96) compared to a previously identified peptide FAM-NP41 (126.17 ± 61.03). FAM-HNP401 showed nerve-to-muscle contrast of 3.03 ± 0.57. FAM-HNP401 binds and highlight multiple human peripheral nerves including lower leg sural, upper arm medial antebrachial as well as autonomic nerves isolated from human prostate. Conclusion: Phage display has identified a novel peptide that selectively binds to ex-vivo human nerves and in-vivo using rodent models. FAM-HNP401 or an optimized variant could be translated for use in a clinical setting for intraoperative identification of human nerves to improve visualization and potentially decrease the incidence of intra-surgical nerve injury
2-D Radiative Transfer in Protostellar Envelopes: I. Effects of Geometry on Class I Sources
We present 2-D radiation transfer models of Class I Protostars and show the
effect of including more realistic geometries on the resulting spectral energy
distributions and images. We begin with a rotationally flattened infalling
envelope as our comparison model, and add a flared disk and bipolar cavity. The
disk affects the spectral energy distribution most strongly at edge-on
inclinations, causing a broad dip at about 10 um (independent of the silicate
feature) due to high extinction and low scattering albedo in this wavelength
region. The bipolar cavities allow more direct stellar+disk radiation to emerge
into polar directions, and more scattering radiation to emerge into all
directions. The wavelength-integrated flux, often interpreted as luminosity,
varies with viewing angle, with pole-on viewing angles seeing 2-4 times as much
flux as edge-on, depending on geometry. Thus, observational estimates of
luminosity should take into account the inclination of a source. The envelopes
with cavities are significantly bluer in near-IR and mid-IR color-color plots
than those without cavities. Using 1-D models to interpret Class I sources with
bipolar cavities would lead to an underestimate of envelope mass and an
overestimate of the implied evolutionary state. We compute images at near-,
mid-, and far-IR wavelengths. We find that the mid-IR colors and images are
sensitive to scattering albedo, and that the flared disk shadows the midplane
on large size scales at all wavelengths plotted. Finally, our models produce
polarization spectra which can be used to diagnose dust properties, such as
albedo variations due to grain growth. Our results of polarization across the
3.1 um ice feature agree well with observations for ice mantles covering 5% of
the radius of the grains.Comment: Accepted for publication in ApJ, 37 pages, 13 figures (several
figures reduced in quality; find original version at
http://gemelli.colorado.edu/~bwhitney/preprints.html
Donor Complications Following Laparoscopic Compared to Hand-Assisted Living Donor Nephrectomy: An Analysis of the Literature
There are two approaches to laparoscopic donor nephrectomy: standard laparoscopic donor nephrectomy (LDN) and hand-assisted laparoscopic donor nephrectomy (HALDN). In this study we report the operative statistics and donor complications associated with LDN and HALDN from large-center peer-reviewed publications. Methods. We conducted PubMed and Ovid searches to identify LDN and HALDN outcome studies that were published after 2004. Results. There were 37 peer-reviewed studies, each with more than 150 patients. Cumulatively, over 9000 patients were included in this study. LDN donors experienced a higher rate of intraoperative complications than HALDN donors (5.2% versus. 2.0%, P < .001). Investigators did not report a significant difference in the rate of major postoperative complications between the two groups (LDN 0.5% versus HALDN 0.7%, P = .111). However, conversion to open procedures from vascular injury was reported more frequently in LDN procedures (0.8% versus 0.4%, P = .047). Conclusion. At present there is no evidence to support the use of one laparoscopic approach in preference to the other. There are trends in the data suggesting that intraoperative injuries are more common in LDN while minor postoperative complications are more common in HALDN
Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize.
Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery
A Disk Shadow Around the Young Star ASR 41 in NGC 1333
We present images of the young stellar object ASR 41 in the NGC 1333 star
forming region at the wavelengths of H_alpha and [SII] and in the I, J, H, and
K-bands.
ASR 41 has the near-infrared morphology of an edge-on disk object, but
appears an order of magnitude larger than typical systems of this kind.
We also present detailed models of the scattering and radiative transfer in
systems consisting of a young star surrounded by a proto-planetary disk, and
the whole system being embedded in either an infalling envelope or a uniform
molecular cloud. The best fit to the observed morphology can be achieved with a
disk of approx. 200 AU diameter, immersed in a low density cloud. The low cloud
density is necessary to stay below the sub-mm flux upper limits and to preserve
the shadow cast by the disk via single scattering.
The results demonstrate that ASR 41 is probably not inherently different from
typical edge-on disk objects, and that its large apparent size is due to the
shadow of a much smaller disk being projected into the surrounding dusty
molecular material
- …