291 research outputs found
Spectral variability of the particulate backscattering ratio
The spectral dependency of the particulate backscattering ratio is relevant in the fields of ocean color inversion, light field modeling, and inferring particle properties from optical measurements. Aside from theoretical predictions for spherical, homogeneous particles, we have very limited knowledge of the actual in situ spectral variability of the particulate backscattering ratio. This work presents results from five research cruises that were conducted over a three-year period. Water column profiles of physical and optical properties were conducted across diverse aquatic environments that offered a wide range of particle populations. The main objective of this research was to examine the behavior of the spectral particulate backscattering ratio in situ, both in terms of its absolute magnitude and its variability across visible wavelengths, using over nine thousand 1-meter binned data points for each of five wavelengths of the spectral particulate backscattering ratio. Our analysis reveals no spectral dependence of the particulate backscattering ratio within our measurement certainty, and a geometric mean value of 0.013 for this dataset. This is lower than the commonly used value of 0.0183 from Petzold\u27s integrated volume scattering data. Within the first optical depth of the water column, the mean particulate backscattering ratio was 0.010
Chronic Inflammatory Responses to Microgel-Based Implant Coatings
Inflammatory responses to implanted biomedical devices elicit a foreign body fibrotic reaction that limits device integration and performance in various biomedical applications. We examined chronic inflammatory responses to microgel conformal coatings consisting of thin films of poly(N-isopropylacrylamide) hydrogel microparticles cross-linked with poly(ethylene glycol) diacrylate deposited on poly(ethylene terephthalate) (PET). Unmodified and microgel-coated PET disks were implanted subcutaneously in rats for 4 weeks and explants were analyzed by histology and immunohistochemistry. Microgel coatings reduced chronic inflammation and resulted in a more mature/organized fibrous capsule. Microgel-coated samples exhibited 22% thinner fibrous capsules that contained 40% fewer cells compared to unmodified PET disks. Furthermore, microgel-coated samples contained significantly higher levels of macrophages (80%) than unmodified PET controls. These results demonstrate that microgel coatings reduce chronic inflammation to implanted biomaterials
Pick-and-Eat Salad-Crop Productivity, Nutritional Value, and Acceptability to Supplement the ISS Food System
The capability to grow nutritious, palatable food for crew consumption during spaceflight has the potential to provide health-promoting, bioavailable nutrients, enhance the dietary experience, and reduce launch mass as we move toward longer-duration missions. However, studies of edible produce during spaceflight have been limited, leaving a significant knowledge gap in the methods required to grow safe, acceptable, nutritious crops for consumption in space. Researchers from Kennedy Space Center, Johnson Space Center, Purdue University and ORBITEC have teamed up to explore the potential for plant growth and food production on the International Space Station (ISS) and future exploration missions. KSC, Purdue, and ORBITEC bring a history of plant and plant-microbial interaction research for ISS and for future bioregenerative life support systems. JSC brings expertise in Advanced Food Technology (AFT), Behavioral Health and Performance (BHP), and statistics. The Veggie vegetable-production system on the ISS offers an opportunity to develop a pick-and-eat fresh vegetable component to the ISS food system as a first step to bioregenerative supplemental food production. We propose growing salad plants in the Veggie unit during spaceflight, focusing on the impact of light quality and fertilizer formulation on crop morphology, edible biomass yield, microbial food safety, organoleptic acceptability, nutritional value, and behavioral health benefits of the fresh produce. The first phase of the project will involve flight tests using leafy greens, with a small Chinese cabbage variety, Tokyo bekana, previously down selected through a series of research tests as a suitable candidate. The second phase will focus on dwarf tomato. Down selection of candidate varieties have been performed, and the dwarf cultivar Red Robin has been selected as the test crop. Four light treatments and three fertilizer treatments will be tested for each crop on the ground, to down select to two light treatments and one fertilizer treatment to test on ISS. Our work will help define light colors, levels, and horticultural best practices to achieve high yields of safe, nutritious leafy greens and tomatoes to supplement a space diet of prepackaged food. Our final deliverable will be the development of growth protocols for these crops in a spaceflight vegetable production system. With this work, and potentially with other pending joint projects, we will continue the synergistic research to help close gaps in the human research roadmap, and enable humans to venture to Mars and beyond. This research was co-funded by the Human Research Program and Space Biology (MTL1075) in the ILSRA 2015 NRA call
Recommended from our members
Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA)
The particle size distribution (PSD) is a critical aspect of the oceanic ecosystem. Local variability in the PSD can be indicative of shifts in microbial community structure and reveal patterns in cell growth and loss. The PSD also plays a central role in particle export by influencing settling speed. Satellite-based models of primary productivity (PP) often rely on aspects of photophysiology that are directly related to community size structure. In an effort to better understand how variability in particle size relates to PP in an oligotrophic ecosystem, we collected laser diffraction-based depth profiles of the PSD and pigment-based classifications of phytoplankton functional types (PFTs) on an approximately monthly basis at the Hawaii Ocean Time-series Station ALOHA, in the North Pacific subtropical gyre. We found a relatively stable PSD in the upper water column. However, clear seasonality is apparent in the vertical distribution of distinct particle size classes. Neither laser diffraction-based estimations of relative particle size nor pigment-based PFTs was found to be significantly related to the rate of ÂčâŽC-based PP in the light-saturated upper euphotic zone. This finding indicates that satellite retrievals of particle size, based on particle scattering or ocean color would not improve parameterizations of present-day bio-optical PP models for this region. However, at depths of 100â125 m where irradiance exerts strong control on PP, we do observe a significant linear relationship between PP and the estimated carbon content of 2â20 ÎŒm particles.This is the publisherâs final pdf. The published article is copyrighted by the author(s) and published by John Wiley & Sons, Inc. The published article can be found at: http://agupubs.onlinelibrary.wiley.com/agu/jgr/journal/10.1002/%28ISSN%292169-9291/All LISST data are available on the HOT website (http://hahana.soest.hawaii.edu/hot/hot-dogs/) and code for additional data processing is available upon request to the corresponding author ([email protected])
Dendritic calcium signals in rhesus macaque motor cortex drive an optical brain-computer interface
Calcium imaging is a powerful tool for recording from large populations of neurons in vivo. Imaging in rhesus macaque motor cortex can enable the discovery of fundamental principles of motor cortical function and can inform the design of next generation brain-computer interfaces (BCIs). Surface two-photon imaging, however, cannot presently access somatic calcium signals of neurons from all layers of macaque motor cortex due to photon scattering. Here, we demonstrate an implant and imaging system capable of chronic, motion-stabilized two-photon imaging of neuronal calcium signals from macaques engaged in a motor task. By imaging apical dendrites, we achieved optical access to large populations of deep and superficial cortical neurons across dorsal premotor (PMd) and gyral primary motor (M1) cortices. Dendritic signals from individual neurons displayed tuning for different directions of arm movement. Combining several technical advances, we developed an optical BCI (oBCI) driven by these dendritic signalswhich successfully decoded movement direction online. By fusing two-photon functional imaging with CLARITY volumetric imaging, we verified that many imaged dendrites which contributed to oBCI decoding originated from layer 5 output neurons, including a putative Betz cell. This approach establishes new opportunities for studying motor control and designing BCIs via two photon imaging
Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium
Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-Îł was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens
Saving Social Media Data: Understanding Data Management Practices Among Social Media Researchers and their Implications for Archives
Social media data offer researchers new opportunities to leverage those data for their work in broad areas such as public opinion, digital culture, labor trends, and public health. Success of efforts to save social media data for reuse by researchers will depend on aligning data management and archiving practices with evolving norms around capture, use, sharing, and security of datasets containing this new type of data. This paper presents an initial foray into understanding how established practices for managing and preserving data should adapt to new demands from social media data, researchers who use and reuse social media data, and people who are subjects in social media data. We examine the data management practices of researchers who use social media data through a survey and an analysis of published articles. We discuss the data management practices described, how they differ from management of more conventional data types, and the implications for creating and maintaining stable archives for these important research resources. We discuss the similarities and differences between social media data and other types of social science research data, including other types of âfoundâ data, and discuss the implications for data archives including social media data in their collections.National Science FoundationInstitute of Museum and Library Serviceshttps://deepblue.lib.umich.edu/bitstream/2027.42/154750/1/Hemphill Leonard Hedstrom JASIST pre-peer review.pdf1550Description of Hemphill Leonard Hedstrom JASIST pre-peer review.pdf : Pre-peer review articl
Preparation for Pick-and-Eat Food Production on the International Space Station: Flight Definition for the VEG-04 and VEG-05 Missions
Growth of fresh, nutritious, palatable produce for crew consumption during spaceflight may provide health-promoting, bioavailable nutrients and enhance the dietary experience as we move toward longer-duration missions. Tending plants also may serve as a countermeasure for crew psychological stresses associated with long duration spaceflight. However, requirements to support consistent growth of a variety of high quality, nutritious crops under spaceflight environmental conditions is unknown. This study is exploring the potential to grow plants for food production on the International Space Station (ISS) using the Veggie vegetable production system. Ground testing is underway to compare the impacts of several fertilizer and lighting treatments on growth, quality, and nutritional composition of the leafy green crop mizuna, and the dwarf tomato crop Red Robin when subjected to Veggie ISS environmental conditions. Early testing focused on the leafy crop Tokyo Bekana Chinese cabbage, but ground tests indicated that this plant suffered from stress responses when grown under LEDs and the chronically elevated CO2 levels found on the ISS. Mizuna, a related leafy variety that grows well in the presence of high CO2, and has excellent organoleptic characteristics, was selected as an alternate crop. Tomato crops have been grown using two fertilizer formulations and two pollination techniques, and growth tests using different red:blue lighting environments are underway. Chemical analysis is also being conducted and these data, when coupled with the growth results, will be used to down-select to the two best lighting treatments and best fertilizer treatment for future testing of each crop on the ISS. Additionally, seed-source testing has become important, with mizuna seeds from two different vendors growing very differently. A seed source has been selected, and seed-surface-sanitizing methods have been confirmed for mizuna, but these remain under development for tomato. A crop-handling protocol is also being evaluated to support food safety. All harvests reserve a subset of samples for microbial analysis to determine baseline microbial levels and help establish critical control points for food safety. Testing was initially conducted in hardware analogs of the standard Veggie plant pillows. However, a new Veggie watering system, the Passive Orbital Nutrient Delivery System or PONDS, has been designed and is being prepared for future flight experiments. With the selection of this growth system, ground tests have shifted to analog PONDS systems. Crop tests on ISS, designated VEG-04 for mizuna and VEG-05 for tomato, are planned in 2018 to evaluate any additional impacts of spaceflight on the light and fertilizer conditions down-selected from ground tests. A set of Veggie-specific questions has been developed to characterize the psychological impacts of plant growth and plant-care activities during spaceflight. Organoleptic questionnaires have been developed to assess produce attributes in microgravity taste sessions. These tests for plants growing in the Veggie hardware on ISS will help to mitigate the risk of an inadequate food supply for long duration missions by developing methods and determining hardware requirements to integrate fresh vegetables as a dietary supplement. This research was co-funded by the Human Research Program and Space Biology (MTL1075) in the ILSRA 2015 NRA call
Study of the 26Al(n,p)26Mg and 26Al(n,α)23Na reactions using the 27Al(p,p')27Al inelastic scattering reaction
26Al was the first cosmic radioactivity ever detected in the galaxy as well as one of the first extinct radioactivity observed in refractory phases of meteorites. Its nucleosynthesis in massive stars is still uncertain mainly due to the lack of nuclear information concerning the 26Al(n,p)26Mg and 26 Al(n,α)23Na reactions. We report on a single and coincidence measurement of the 27Al(p,p')27Al(p)26Mg and 27Al(p,p')27Al(α)23Na reactions performed at the Orsay TANDEM facility aiming at the spectroscopy study of 27Al above the neutron threshold. Fourteen states are observed for the first time within 350 keV above the 26Al+n threshold
Supermassive Binaries and Extragalactic Jets
Some quasars show Doppler shifted broad emission line peaks. I give new
statistics of the occurrence of these peaks and show that, while the most
spectacular cases are in quasars with strong radio jets inclined to the line of
sight, they are also almost as common in radio-quiet quasars. Theories of the
origin of the peaks are reviewed and it is argued that the displaced peaks are
most likely produced by the supermassive binary model. The separations of the
peaks in the 3C 390.3-type objects are consistent with orientation-dependent
"unified models" of quasar activity. If the supermassive binary model is
correct, all members of "the jet set" (astrophysical objects showing jets)
could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see
http://www.aas.org/ApJ/v464n2/5736/5736.html
- âŠ