31 research outputs found

    Effects of Environmental Enrichment on Dog Behaviour: Pilot Study

    Get PDF
    Environmental enrichment (EE) can be used to enhance the environment of various animals. The aim of this pilot study was to determine the effects of seven EE activities (Bonding, Bubble machine, Conspecific play, Interactive toy, Playhouse, Stuffed food toy and Tug play) on dog behaviour, pre- and post-EE for dogs housed in an office environment during training as part of an assistance dog training programme. EE activities resulted in a significant increase in the frequency of relaxation behaviours (p < 0.01) and a significant reduction in alert (p < 0.01) and stress behaviours (p = 0.02). Results suggest various benefits of the different activities with Conspecific Play and Playhouse activities having the greatest overall positive behaviour change when compared to the other activities. The food-based EE activities (Interactive toy and Stuffed food toy) had the least behaviour change of all the activities provided. Findings will be of interest to pet owners, animal rescue centres, dog trainers and working dog organisations

    Spatial and temporal patterns in petrogenic organic carbon mobilisation during the Paleocene-Eocene Thermal Maximum

    Get PDF
    The Paleocene‐Eocene Thermal Maximum (PETM) was a transient global warming event and is recognized in the geologic record by a prolonged negative carbon isotope excursion (CIE). The onset of the CIE was due to a rapid influx of 13C‐depleted carbon into the ocean‐atmosphere system. However, the mechanisms required to sustain the negative CIE remains unclear. Enhanced mobilization and oxidation of petrogenic organic carbon (OCpetro) has been invoked to explain elevated atmospheric carbon dioxide concentrations after the onset of the CIE. However, existing evidence is limited to the mid‐latitudes and subtropics. Here, we determine whether: (a) enhanced mobilization and subsequent burial of OCpetro in marine sediments was a global phenomenon; and (b) whether it occurred throughout the PETM. To achieve this, we utilize a lipid biomarker approach to trace and quantify OCpetro burial in a global compilation of PETM‐aged shallow marine sites (n = 7, including five new sites). Our results confirm that OCpetro mass accumulation rates (MARs) increased within the subtropics and mid‐latitudes during the PETM, consistent with evidence of higher physical erosion rates and intense episodic rainfall events. High‐latitude sites do not exhibit drastic changes in the source of organic carbon during the PETM and OCpetro MARs increase slightly or remain stable, perhaps due a more stable hydrological regime. Crucially, we also demonstrate that OCpetro MARs remained elevated during the recovery phase of the PETM. Although OCpetro oxidation was likely an important positive feedback mechanism throughout the PETM, we show that this feedback was both spatially and temporally variable
    corecore