84 research outputs found
A Study of Morphological Character Displacement in the Social Wasp, \u3ci\u3ePolistes fuscatus\u3c/i\u3e
According to competition theory, when a population lives sympatrically with competitor populations, the variation in morphological characteristics within each population should be reduced. In allopatric populations, the variation in these characteristics should increase. I examined morphological character displacement in Polistes fuscatus populations in a north-south latitudinal gradient across the United States. P. fuscatus is sympatric with at least five other congeneric species in U.S. Gulf Coastal areas. As latitude increases, the number of species is reduced, and only P. fuscatus is found in Minnesota. Therefore, body size variation of P. fuscatus in Minnesota was predicted to be broader than the body size variation of P. fuscatus occurring in the southern U.S. To compare relative body size, I measured each species\u27 forewing length, mesothorax width, and head capsule width from population samples from each of the latitudinal transects.
I found initial indications of character displacement in P. fuscatus across latitude, although future studies are needed. In a supplemental study, I found preliminary evidence of character displacement in island and continental populations of P. exclamans. An allopatric population of P. exclamans from Hatteras Island, North Carolina, had larger ranges of character measurements than one population of P. exclamans from continental North Carolina, and another population of P. exclamans from Alabama and Texas, where the populations are sympatric with at least four other species of Polistes
Microsporidia Are Natural Intracellular Parasites of the Nematode Caenorhabditis elegans
For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes
Recommended from our members
Habitat preference of an herbivore shapes the habitat distribution of its host plant
Plant distributions can be limited by habitat-biased herbivory, but the proximate causes of such biases are rarely known. Distinguishing plant-centric from herbivore-centric mechanisms driving differential herbivory between habitats is difficult without experimental manipulation of both plants and herbivores. Here, we tested alternative hypotheses driving habitat-biased herbivory in bittercress (Cardamine cordifolia), which is more abundant under the shade of shrubs and trees (shade) than in nearby meadows (sun) where herbivory is intense from the specialist fly Scaptomyza nigrita. This system has served as a textbook example of habitat-biased herbivory driving a plant's distribution across an ecotone, but the proximate mechanisms underlying differential herbivory are still unclear. First, we found that higher S. nigrita herbivory in sun habitats contrasts sharply with their preference to attack plants from shade habitats in laboratory-choice experiments. Second, S. nigrita strongly preferred leaves in simulated sun over simulated shade habitats, regardless of plant source habitat. Thus, herbivore preference for brighter, warmer habitats overrides their preference for more palatable shade plants. This promotes the sun-biased herbivore pressure that drives the distribution of bittercress into shade habitats
Recommended from our members
A draft reference genome assembly of California Pipevine, Aristolochia californica Torr.
The California Pipevine, Aristolochia californica Torr., is the only endemic California species within the cosmopolitan birthwort family Aristolochiaceae. It occurs as an understory vine in riparian and chaparral areas and in forest edges and windrows. The geographic range of this plant species almost entirely overlaps with that of its major specialized herbivore, the California Pipevine Swallowtail Butterfly Battus philenor hirsuta. While this species pair is a useful, ecologically well-understood system to study co-evolution, until recently, genomic resources for both have been lacking. Here, we report a new, chromosome-level assembly of A. californica as part of the California Conservation Genomics Project (CCGP). Following the sequencing and assembly strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin proximity sequencing technology to produce a de novo assembled genome. Our genome assembly, the first for any species in the genus, contains 531 scaffolds spanning 661 megabase (Mb) pairs, with a contig N50 of 6.53 Mb, a scaffold N50 of 42.2 Mb, and BUSCO complete score of 98%. In combination with the recently published B. philenor hirsuta reference genome assembly, the A. californica reference genome assembly will be a powerful tool for studying co-evolution in a rapidly changing California landscape
Recommended from our members
Mining the Plant-Herbivore Interface with a Leafmining Drosophila of Arabidopsis
Experimental infections of Arabidopsis thaliana (Arabidopsis) with genomically characterized plant pathogens such as Pseudomonas syringae have facilitated the dissection of canonical eukaryotic defence pathways and parasite virulence factors. Plants are also attacked by herbivorous insects, and the development of an ecologically relevant genetic model herbivore that feeds on Arabidopsis will enable the parallel dissection of host defence and reciprocal resistance pathways such as those involved in xenobiotic metabolism. An ideal candidate is Scaptomyza flava, a drosophilid fly whose leafmining larvae are true herbivores that can be found in nature feeding on Arabidopsis and other crucifers. Here, we describe the life cycle of S. flava on Arabidopsis and use multiple approaches to characterize the response of Arabidopsis to S. flava attack. Oviposition choice tests and growth performance assays on different Arabidopsis ecotypes, defence-related mutants, and hormone and chitin-treated plants revealed significant differences in host preference and variation in larval performance across Arabidopsis accessions. The jasmonate and glucosinolate pathways in Arabidopsis are important in mediating quantitative resistance against S. flava, and priming with jasmonate or chitin resulted in increased resistance. Expression of xenobiotic detoxification genes was reduced in S. flava larvae reared on Arabidopsis jasmonate signalling mutants and increased in plants pretreated with chitin. These results and future research directions are discussed in the context of developing a genetic model system to analyse insect–plant interactions.Organismic and Evolutionary Biolog
Recommended from our members
Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid Fly
Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the widely studied reference plant, Arabidopsis thaliana (Arabidopsis). Scaptomyza flava is phylogenetically nested within the paraphyletic genus Drosophila, and the whole genome sequences available for 12 species of Drosophila facilitated phylogenetic analysis and assembly of a transcriptome for S. flava. A time-calibrated phylogeny indicated that leaf mining in Scaptomyza evolved between 6 and 16 million years ago. Feeding assays showed that biosynthesis of glucosinolates, the major class of antiherbivore chemical defense compounds in mustard leaves, was upregulated by S. flava larval feeding. The presence of glucosinolates in wild-type (WT) Arabidopsis plants reduced S. flava larval weight gain and increased egg–adult development time relative to flies reared in glucosinolate knockout (GKO) plants. An analysis of gene expression differences in 5-day-old larvae reared on WT versus GKO plants showed a total of 341 transcripts that were differentially regulated by glucosinolate uptake in larval S. flava. Of these, approximately a third corresponded to homologs of Drosophila melanogaster genes associated with starvation, dietary toxin-, heat-, oxidation-, and aging-related stress. The upregulated transcripts exhibited elevated rates of protein evolution compared with unregulated transcripts. The remaining differentially regulated transcripts also contained a higher proportion of novel genes than the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the evolution of novel genes and the co-option of conserved stress-related genes.Organismic and Evolutionary Biolog
110 Years of Avipoxvirus in the Galapagos Islands
The role of disease in regulating populations is controversial, partly owing to the absence of good disease records in historic wildlife populations. We examined birds collected in the Galapagos Islands between 1891 and 1906 that are currently held at the California Academy of Sciences and the Zoologisches Staatssammlung Muenchen, including 3973 specimens representing species from two well-studied families of endemic passerine birds: finches and mockingbirds. Beginning with samples collected in 1899, we observed cutaneous lesions consistent with Avipoxvirus on 226 (6.3%) specimens. Histopathology and viral genotyping of 59 candidate tissue samples from six islands showed that 21 (35.6%) were positive for Avipoxvirus, while alternative diagnoses for some of those testing negative by both methods were feather follicle cysts, non-specific dermatitis, or post mortem fungal colonization. Positive specimens were significantly nonrandomly distributed among islands both for mockingbirds (San Cristobal vs. Espanola, Santa Fe and Santa Cruz) and for finches (San Cristobal and Isabela vs. Santa Cruz and Floreana), and overall highly significantly distributed toward islands that were inhabited by humans (San Cristobal, Isabela, Floreana) vs. uninhabited at the time of collection (Santa Cruz, Santa Fe, Espanola), with only one positive individual on an uninhabited island. Eleven of the positive specimens sequenced successfully were identical at four diagnostic sites to the two canarypox variants previously described in contemporary Galapagos passerines. We conclude that this virus was introduced late in 1890′s and was dispersed among islands by a variety of mechanisms, including regular human movements among colonized islands. At present, this disease represents an ongoing threat to the birds on the Galapagos Islands
Recommended from our members
Evolution of insect innate immunity through domestication of bacterial toxins
Toxin cargo genes are often horizontally transferred by phages between bacterial species and are known to play an important role in the evolution of bacterial pathogenesis. Here, we show how these same genes have been horizontally transferred from phage or bacteria to animals and have resulted in novel adaptations. We discovered that two widespread bacterial genes encoding toxins of animal cells, cytolethal distending toxin subunit B ( cdtB ) and apoptosis-inducing protein of 56 kDa ( aip56) , were captured by insect genomes through horizontal gene transfer from bacteria or phages. To study the function of these genes in insects, we focused on Drosophila ananassae as a model. In the D. ananassae subgroup species, cdtB and aip56 are present as singular ( cdtB ) or fused copies ( cdtB::aip56 ) on the second chromosome. We found that cdtB and aip56 genes and encoded proteins were expressed by immune cells, some proteins were localized to the wasp embryo’s serosa, and their expression increased following parasitoid wasp infection. Species of the ananassae subgroup are highly resistant to parasitoid wasps, and we observed that D. ananassae lines carrying null mutations in cdtB and aip56 toxin genes were more susceptible to parasitoids than the wild type. We conclude that toxin cargo genes were captured by these insects millions of years ago and integrated as novel modules into their innate immune system. These modules now represent components of a heretofore undescribed defense response and are important for resistance to parasitoid wasps. Phage or bacterially derived eukaryotic toxin genes serve as macromutations that can spur the instantaneous evolution of novelty in animals
Highly contiguous assemblies of 101 drosophilid genomes
Over 100 years of studies in Drosophila melanogaster and related species in the genus Drosophila have facilitated key discoveries in genetics, genomics, and evolution. While high-quality genome assemblies exist for several species in this group, they only encompass a small fraction of the genus. Recent advances in long-read sequencing allow high-quality genome assemblies for tens or even hundreds of species to be efficiently generated. Here, we utilize Oxford Nanopore sequencing to build an open community resource of genome assemblies for 101 lines of 93 drosophilid species encompassing 14 species groups and 35 sub-groups. The genomes are highly contiguous and complete, with an average contig N50 of 10.5 Mb and greater than 97% BUSCO completeness in 97/101 assemblies. We show that Nanopore-based assemblies are highly accurate in coding regions, particularly with respect to coding insertions and deletions. These assemblies, along with a detailed laboratory protocol and assembly pipelines, are released as a public resource and will serve as a starting point for addressing broad questions of genetics, ecology, and evolution at the scale of hundreds of species
Diversification and dispersal of the Hawaiian Drosophilidae: The evolution of Scaptomyza
The genus Scaptomyza is emerging as a model lineage in which to study biogeography and ecological adaptation. To place future research on these species into an evolutionary framework we present the most comprehensive phylogeny of Scaptomyza to date, based on 5042 bp of DNA sequence data and representatives from 13 of 21 subgenera. We find evidence that the lineage originated in the Hawaiian Islands and subsequently dispersed to the mainland and other remote oceanic islands. We also identify that many of the unique ecological niches exploited by this lineage (e.g., herbivory, spider predation) arose singly and independently. We find strong support for the monophyly of almost all subgenera with exceptions corroborating hypotheses of conflict inferred from previous taxonomic studies
- …