15 research outputs found

    Validation of the flooding dose technique to determine fractional rates of protein synthesis in a model bivalve species, the blue mussel (Mytilus edulis L.)

    Get PDF
    For the first time, use of the flooding dose technique using 3H-Phenylalanine is validated for measuring whole-animal and tissue-specific rates of protein synthesis in the blue mussel Mytilus edulis (61 mm shell length; 4.0 g fresh body mass). Following injection, the phenylalanine-specific radioactivities in the gill, mantle and whole-animal free pools were elevated within one hour and remained elevated and stable for up to 6 h following injection of 3H-phenylalanine into the posterior adductor muscle. Incorporation of 3H-phenylalanine into body protein was linear over time following injection and the non-significant intercepts for the regressions suggested incorporation into body protein occurred rapidly after injection. These results validate the technique for measuring rates of protein synthesis in mussels. There were no differences in the calculated rates following 1�6 h incubation in gill, mantle or whole-animal and fractional rates of protein synthesis from the combined time course data were 9.5 ± 0.8% d� 1 for the gill, 2.5 ± 0.3% d� 1 for the mantle and 2.6 ± 0.3% d� 1 for the whole-animal, respectively (mean values ± SEM). The whole-animal absolute rate of protein synthesis was calculated as 18.9 ± 0.6 mg protein day� 1. The use of this technique in measuring one of the major components of maintenance metabolism and growth will provide a valuable and convenient tool in furthering our understanding of the protein metabolism and energetics of this keystone marine invertebrate and its ability to adjust and respond to fluctuations, such as that expected as a result of climate change

    Physiological and ecological responses of crustaceans to ocean acidification

    No full text
    The sensitivity of marine crustaceans to ocean acidification is poorly understood, but can be assessed by combining data from physiological and ecological studies. The species most at risk are exclusively marine and have limited physiological capacities to adjust to environmental change. They are poor iono- and osmoregulators and have limited abilities to compensate for acid�base disturbances. The problems are compounded in slow-moving, relatively inactive species because they have low circulating protein levels and low buffering capacities. Species living in low-energy environments, such as deep-sea and polar habitats, are particularly vulnerable, because they are metabolically limited with respect to environmental change. Elevated pCO2 levels in seawater, such as those predicted for the year 2300, are known to have diverse effects on calcification rate, little effect on egg production and a negative effect on growth rate and moulting frequency in marine crustacean species. At these levels, embryonic development is negatively impacted, but larval and juvenile stages do not appear to be affected, unless the changes in pCO2 are accompanied by rising temperatures. Overall, marine crustaceans are broadly tolerant to the seawater pCO2 levels expected by 2100 and 2300, but only in the medium-term (weeks) and only in the more adaptable species. The reductions in growth rate are of concern, as these changes could affect species survival, distribution and abundance. Studies are urgently needed to evaluate whether the patterns of vulnerability identified here in crustaceans will still be relevant after long-term (months) exposure to the relevant pCO2 levels, in combination with changes in other environmental factors

    Influence of Natural Thermal Gradients on Whole Animal Rates of Protein Synthesis in Marine Gammarid Amphipods

    Get PDF
    Although temperature is known to have an important effect on protein synthesis rates and growth in aquatic ectotherms held in the laboratory, little is known about the effects of thermal gradients on natural populations in the field. To address this issue we determined whole-animal fractional rates of protein synthesis (ks) in four dominant species of gammarid amphipods with different distributions along the coasts of Western Europe from arctic to temperate latitudes. Up to three populations of each species were collected in the summer and ks measured within 48 h. Summer ks values were relatively high in the temperate species, Gammarus locusta, from Portugal (48°N) and Wales (53°N) and were maintained across latitudes by the conservation of translational efficiency. In sharp contrast, summer ks remained remarkably low in the boreal/temperate species G. duebeni from Wales, Scotland (58°N) and Tromsø (70°N), probably as a temporary energy saving strategy to ensure survival in rapidly fluctuating environments of the high intertidal. Values for ks increased in acclimated G. duebeni from Scotland and Tromsø showing a lack of compensation with latitude. In the subarctic/boreal species, G. oceanicus, summer ks remained unchanged in Scotland and Tromsø but fell significantly in Svalbard (79°N) at 5°C, despite a slight increase in RNA content. At 79°N, mean ks was 4.5 times higher in the circumpolar species G. setosus than in G. oceanicus due to a doubling in RNA content. The relationship between whole-animal protein synthesis rates and natural thermal gradients is complex, varies between species and appears to be associated with local temperatures and their variability, as well as changes in other environmental factors

    Congeneric Amphipods Show Differing Abilities to Maintain Metabolic Rates with Latitude

    No full text
    Metabolic variability across latitudinal populations of gammarid amphipods was examined in the summer by determining whole-animal rates of oxygen uptake () in four species with overlapping distribution patterns in the northeast Atlantic and Arctic oceans. Comparisons were made between an arctic/boreal species, Gammarus setosus, a subarctic/boreal species, Gammarus oceanicus, a boreal/temperate species, Gammarus duebeni duebeni, and a temperate species, Gammarus locusta. Measurements included acclimatized in all four species and after acclimation to 10°C in two populations of G. oceanicus and G. locusta. In G. oceanicus, acclimatized declined with latitude (13° to 5°C) so that metabolic rates were lower in subarctic (79°N) relative to temperate (58°N) populations and similar to the values in G. setosus at 79°N. Consequently, there was no evidence for metabolic rate compensation in the colder-water, high-latitude populations in the summer. Further examination of the specific effects of temperature revealed similarities in between populations of G. oceanicus acclimated at 10°C and similarities in thermal sensitivity (Q10) and activation energies (Ea) on exposure to acute temperature change. In sharp contrast, there was no variation in summer acclimatized with latitude in either G. d. duebeni between 48° and 70°N or G. locusta between 38° and 53°N. Instead, the two species maintained relatively high metabolic rates across latitudes, which were associated in G. locusta with differences in and with Q10 and Ea values in amphipods acclimated at 10°C. The ability to compensate metabolic rate with latitude in the summer suggests greater metabolic flexibility, which predicts a greater capacity for survival during climate change of the temperate/boreal over the subarctic and arctic gammarid species

    Physiological responses to digestion in low salinity in the crabs Carcinus maenas and Cancer irroratus

    No full text
    Osmoregulation and digestion are energetically demanding, and crabs that move into low salinity environments to feed must be able to balance the demands of both processes. Achieving this balance may pose greater challenges for weak than for efficient osmoregulators. This study examined the rate of oxygen consumption (MO2) of Carcinus maenas (efficient osmoregulator) and Cancer irroratus (weak osmoregulator) as a function of feeding and hyposaline stress. The MO2 increased 2-fold in both species following feeding. The MO2 increased and remained elevated in fasted crabs during acute hyposaline exposure. When hyposaline stress occurred after feeding, C. maenas responded with an immediate summation of the MO2 associated with feeding and hyposaline stress, whereas C. irroratus reacted with a partial summation of responses in a salinity of 24 parts per thousand, but were unable to sum responses in 16 parts per thousand. C. irroratus exhibited longer gut transit times. This may be due to an inability to regulate osmotic water onload as efficiently as C. maenas. Mechanical digestion in crabs can account for a significant portion of SDA, and a short term interruption led to the delay in summation of metabolic demands. Although protein synthesis is reported to account for the majority of SDA, this did not appear to be the case here. Protein synthesis rates were higher in C. irroratus but neither feeding or salinity affected protein synthesis rates of either species which suggests that protein synthesis can continue in low salinity as long as substrates are available

    Characterisation of myosin heavy chain gene variants in the fast and slow muscle fibres of gammarid amphipods

    No full text
    Recent molecular work has revealed a large diversity of myosin heavy chain (MyHC) gene variants in the abdominal musculature of gammarid amphipods. An unusual truncated MyHC transcript from the loop 1 region (Variant A3) was consistently observed in multiple species and populations. The current study aimed to determine whether this MyHC variant is specific to a particular muscle fibre type, as a change in net charge to the loop 1 region of Variant A3 could be functionally significant. The localisation of different fibre types within the abdominal musculature of several gammarid species revealed that the deep flexor and extensor muscles are fast-twitch muscle fibres. The dorsal superficial muscles were identified as slow fibres and the muscles extrinsic to the pleopods were identified as intermediate fibres. Amplification of loop 1 region mRNA from isolated superficial extensor and deep flexor muscles, and subsequent liquid chromatography and sequence analysis revealed that Variant A3 was the primary MyHC variant in slow muscles, and the conserved A1 sequence was the primary variant in fast muscles. The specific role of Variant A3 in the slow muscles remains to be investigated
    corecore