59,351 research outputs found

    A Renormalization Group Method for Quasi One-dimensional Quantum Hamiltonians

    Full text link
    A density-matrix renormalization group (DMRG) method for highly anisotropic two-dimensional systems is presented. The method consists in applying the usual DMRG in two steps. In the first step, a pure one dimensional calculation along the longitudinal direction is made in order to generate a low energy Hamiltonian. In the second step, the anisotropic 2D lattice is obtained by coupling in the transverse direction the 1D Hamiltonians. The method is applied to the anisotropic quantum spin half Heisenberg model on a square lattice.Comment: 4 pages, 4 figure

    Competition Between Stripes and Pairing in a t-t'-J Model

    Full text link
    As the number of legs n of an n-leg, t-J ladder increases, density matrix renormalization group calculations have shown that the doped state tends to be characterized by a static array of domain walls and that pairing correlations are suppressed. Here we present results for a t-t'-J model in which a diagonal, single particle, next-near-neighbor hopping t' is introduced. We find that this can suppress the formation of stripes and, for t' positive, enhance the d_{x^2-y^2}-like pairing correlations. The effect of t' > 0 is to cause the stripes to evaporate into pairs and for t' < 0 to evaporate into quasi-particles. Results for n=4 and 6-leg ladders are discussed.Comment: Four pages, four encapsulated figure

    Anisotropic constitutive relationships in energetic materials: PETN and HMX

    Get PDF
    This paper presents results of first-principles density functional calculations of the equation of state (EOS) of PETN-I and beta-HMX. The isotropic EOS for hydrostatic compression has been extended to include uniaxial compressions in the [100], [010], [001], [110], [101], [011], and [111] directions up to compression ratio V/V0 = 0.70. Equilibrium properties, including lattice parameters and elastic constants, as well as hydrostatic EOS are in good agreement with available experimental data. The shear stresses of uniaxially compressed PETN-I and beta-HMX have been evaluated and their behavior as a function of compression ratio has been used to make predictions of shock sensitivity of these EMs. A comparison of predicted sensitivities with available experimental data has also been performed

    Temperature Dependence of Spin Correlation and Charge Dynamics in the Stripe Phase of High-T_c Superconductors

    Full text link
    We examine the temperature dependence of the electronic states in the stripe phase of high-Tc cuprates by using the t-J model with a potential that stabilizes vertical charge stripes. Charge and spin-correlation functions and optical conductivity are calculated by using finite-temperature Lanczos method. At zero temperature, the antiferromagnetic correlation between a spin in a charge stripe and that in a spin domain adjacent to the stripe is weak, since the charge stripe and the spin domain are almost separated. With increasing temperature, the correlation increases and then decreases toward high temperature. This is in contrast to other correlations that decrease monotonically. From the examination of the charge dynamics, we find that this anomalous temperature dependence of the correlation is the consequence of a crossover from one-dimensional electronic states to two-dimensional ones.Comment: 7 pages in two-column format, 6 figures, to be published in Phys. Rev.

    First-principles anisotropic constitutive relationships in β-cyclotetramethylene tetranitramine (β-HMX)

    Get PDF
    First-principles density functional theory calculations have been performed to obtain constitutive relationships in the crystalline energetic material β-cyclotetramethylene tetranitramine (β-HMX). In addition to hydrostatic loading, uniaxial compressions in the directions normal to the {100}, {010}, {001}, {110}, {101}, {011}, and {111} planes have been performed to investigate the anisotropic equation of state (EOS). The calculated lattice parameters and hydrostatic EOS are in reasonable agreement with the available experimental data. The uniaxial compression data show a significant anisotropy in the principal stresses, change in energy, band gap, and shear stresses, which might lead to the anisotropy of the elastic-plastic shock transition and shock sensitivity of β-HMX

    Nanoscale Molecular Dynamics Simulaton of Shock Compression of Silicon

    Get PDF
    We report results of molecular dynamics simulation of shock wave propagation in silicon in [100], [110], and [111] directions obtained using a classical environment-dependent interatomic potential (EDIP). Several regimes of materials response are classified as a function of shock wave intensity using the calculated shock Hugoniot. Shock wave structure in [100] and [111] directions exhibit usual evolution as a function of piston velocity. At piston velocities km/s the shock wave consists of a fast elastic precursor followed by a slower plastic front. At larger piston velocities the single overdriven plastic wave propagates through the crystal causing amorphitization of Si. However, the [110] shock wave exhibits an anomalous materials response at intermediate piston velocities around km/s which is characterized by the absence of plastic deformations

    Density functional theory calculations of anisotropic constitutive relationships in alpha-cyclotrimethylenetrinitramine

    Get PDF
    Constitutive relationships in the crystalline energetic material alpha-cyclotrimethylenetrinitramine (alpha-RDX) have been investigated using first-principles density functional theory. The equilibrium properties of alpha-RDX including unit cell parameters and bulk modulus, as well as the hydrostatic equation of state (EOS), have been obtained and compared with available experimental data. The isotropic EOS has been extended to include the anisotropic response of alpha-RDX by performing uniaxial compressions normal to several low-index planes, {100}, {010}, {001}, {110}, {101}, {011}, and {111}, in the Pbca space group. The uniaxial-compression data exhibit a considerable anisotropy in the principal stresses, changes in energy, band gaps, and shear stresses, which might play a role in the anisotropic behavior of alpha-RDX under shock loading

    First-principles investigation of anisotropic constitutive relationships in pentaerythritol tetranitrate

    Get PDF
    First-principles density functional theory (DFT) calculations have been used to obtain the constitutive relationships of pentaerythritol tetranitrate (PETN-I), a crystalline energetic material. The isotropic equation of state (EOS) for hydrostatic compression has been extended to include uniaxial compressions in the , , , , , , and crystallographic directions up to a compression ratio of V/V0=0.70. DFT predicts equilibrium properties such as lattice parameters and elastic constants, as well as the hydrostatic EOS, in agreement with available experimental data. Our results show a substantial anisotropy of various properties of PETN-I upon uniaxial compression. To characterize the anisotropic traits of PETN, different physical properties of the uniaxially compressed crystal such as the energy per atom, band gap, and stress tensor have been evaluated as a function of compression ratio. The maximum shear stresses were calculated and examined for a correlation with the anisotropy in shock-initiation sensitivity

    Phase Diagram of a 2D Vertex Model

    Full text link
    Phase diagram of a symmetric vertex model which allows 7 vertex configurations is obtained by use of the corner transfer matrix renormalization group (CTMRG), which is a variant of the density matrix renormalization group (DMRG). The critical indices of this model are identified as β=1/8\beta = 1/8 and α=0\alpha = 0.Comment: 2 pages, 5 figures, short not
    corecore