78,912 research outputs found
Ground truth applications to orbit refinements
A weighted least-squares recursive estimator program is reported for simulating spacecraft orbital position by analyzing earth and sun sensor data. The program uses constant time adjustment for a set of ephemeris data to eliminate intrack error and to improve attitude determination accuracy
X-ray Binaries and Globular Clusters in Elliptical Galaxies
The X-ray emission from normal elliptical galaxies has two major components:
soft emission from diffuse gas and harder emission from populations of
accreting (low-mass) stellar X-ray binaries (LMXB). If LMXB populations are
tied to the field stellar populations in galaxies, their total X-ray
luminosities should be proportional to the optical luminosities of galaxies.
However, recent ASCA and Chandra X-ray observations show that the global
luminosities of LMXB components in ellipticals exhibit significant scatter at a
given optical luminosity. This scatter may reflect a range of evolutionary
stages among LMXB populations in ellipticals of different ages. If so, the
ratio of the global LMXB X-ray luminosity to the galactic optical luminosity,
L_LMXB/L_opt, may be used to determine when the bulk of stars were formed in
individual ellipticals. To test this, we compare variations in L_LMXB/L_opt for
LMXB populations in ellipticals to optically-derived estimates of stellar ages
in the same galaxies. We find no correlation, implying that L_LMXB/L_opt
variations are not good age indicators for ellipticals. Alternatively, LMXBs
may be formed primarily in globular clusters (through stellar tidal
interactions), rather than in the stellar fields of galaxies. Since elliptical
galaxies exhibit a wide range of globular cluster populations for a given
galaxian luminosity, this may induce a dispersion in the LMXB populations of
ellipticals with similar optical luminosities. Indeed, we find that
L_LMXB/L_opt ratios for LMXB populations are strongly correlated with the
specific globular cluster frequencies in elliptical galaxies. This suggests
that most LMXBs were formed in globular clusters.Comment: 5 pages, emulateapj5 style, 2 embedded EPS figures, to appear in ApJ
Letter
Optimal Compression of Floating-point Astronomical Images Without Significant Loss of Information
We describe a compression method for floating-point astronomical images that
gives compression ratios of 6 -- 10 while still preserving the scientifically
important information in the image. The pixel values are first preprocessed by
quantizing them into scaled integer intensity levels, which removes some of the
uncompressible noise in the image. The integers are then losslessly compressed
using the fast and efficient Rice algorithm and stored in a portable FITS
format file. Quantizing an image more coarsely gives greater image compression,
but it also increases the noise and degrades the precision of the photometric
and astrometric measurements in the quantized image. Dithering the pixel values
during the quantization process can greatly improve the precision of
measurements in the images. This is especially important if the analysis
algorithm relies on the mode or the median which would be similarly quantized
if the pixel values are not dithered. We perform a series of experiments on
both synthetic and real astronomical CCD images to quantitatively demonstrate
that the magnitudes and positions of stars in the quantized images can be
measured with the predicted amount of precision. In order to encourage wider
use of these image compression methods, we have made available a pair of
general-purpose image compression programs, called fpack and funpack, which can
be used to compress any FITS format image.Comment: Accepted PAS
Lossless Astronomical Image Compression and the Effects of Noise
We compare a variety of lossless image compression methods on a large sample
of astronomical images and show how the compression ratios and speeds of the
algorithms are affected by the amount of noise in the images. In the ideal case
where the image pixel values have a random Gaussian distribution, the
equivalent number of uncompressible noise bits per pixel is given by Nbits
=log2(sigma * sqrt(12)) and the lossless compression ratio is given by R =
BITPIX / Nbits + K where BITPIX is the bit length of the pixel values and K is
a measure of the efficiency of the compression algorithm.
We perform image compression tests on a large sample of integer astronomical
CCD images using the GZIP compression program and using a newer FITS
tiled-image compression method that currently supports 4 compression
algorithms: Rice, Hcompress, PLIO, and GZIP. Overall, the Rice compression
algorithm strikes the best balance of compression and computational efficiency;
it is 2--3 times faster and produces about 1.4 times greater compression than
GZIP. The Rice algorithm produces 75%--90% (depending on the amount of noise in
the image) as much compression as an ideal algorithm with K = 0.
The image compression and uncompression utility programs used in this study
(called fpack and funpack) are publicly available from the HEASARC web site. A
simple command-line interface may be used to compress or uncompress any FITS
image file.Comment: 20 pages, 9 figures, to be published in PAS
Paleobiomarkers and defining exobiology experiments for future Mars experiments
Mars is a cold, dry planet with an oxidizing surface bombarded by ultraviolet and ionizing radiation, making prospects for an extant Mars biota bleak. Yet, it is suggested that early Earth and early Mars were similar enought that life may have evoled on Mars. If life did evolve on Mars, what evidence for its existence might we find? What constitutes a Martian paleobiomarker, and how can we distinguish such a marker from abiotically produced substances? The topics studied to answer this question include carbon and nitrogen cycling, as well as the stability and relative abundance of their intermediates in microbially dominated ecosystems. The microbially dominated ecosystems studied are the crytoendolithic microbial community living within sand rocks, the endoevaporite microbial community living inside salt crystals, and the microbial communities living beneath perennially ice-covered lakes and hypersaline ponds. The nitrogen cycle of these communities ranges from simple, where only assimilation occurs, to the more complex, where a complete cycle occurs. The carbon cycle of these communities appears to be complete
A Renormalization Group Method for Quasi One-dimensional Quantum Hamiltonians
A density-matrix renormalization group (DMRG) method for highly anisotropic
two-dimensional systems is presented. The method consists in applying the usual
DMRG in two steps. In the first step, a pure one dimensional calculation along
the longitudinal direction is made in order to generate a low energy
Hamiltonian. In the second step, the anisotropic 2D lattice is obtained by
coupling in the transverse direction the 1D Hamiltonians. The method is applied
to the anisotropic quantum spin half Heisenberg model on a square lattice.Comment: 4 pages, 4 figure
Spin-tunnel investigation of a 1/25-scale model of the General Dynamics F-16XL airplane
A spin-tunnel investigation of the spin and recovery characteristics of a 1/25-scale model to the General Dynamics F-16XL aircraft was conducted in the Langley Spin Tunnel. Tests included erect and inverted spins at various symmetric and asymmetric loading conditions. The required size of an emergency spin-recovery parachute was determined
Neel order in square and triangular lattice Heisenberg models
Using examples of the square- and triangular-lattice Heisenberg models we
demonstrate that the density matrix renormalization group method (DMRG) can be
effectively used to study magnetic ordering in two-dimensional lattice spin
models. We show that local quantities in DMRG calculations, such as the on-site
magnetization M, should be extrapolated with the truncation error, not with its
square root, as previously assumed. We also introduce convenient sequences of
clusters, using cylindrical boundary conditions and pinning magnetic fields,
which provide for rapidly converging finite-size scaling. This scaling behavior
on our clusters is clarified using finite-size analysis of the effective
sigma-model and finite-size spin-wave theory. The resulting greatly improved
extrapolations allow us to determine the thermodynamic limit of M for the
square lattice with an error comparable to quantum Monte Carlo. For the
triangular lattice, we verify the existence of three-sublattice magnetic order,
and estimate the order parameter to be M = 0.205(15).Comment: 4 pages, 5 figures, typo fixed, reference adde
The linear polarization of lunar thermal emission at 3.1 mm wavelength
Several observations of the distribution of linearly polarized lunar thermal emission were made at a wavelength of 3.1 mm with 4.88 m parabolic reflector from February to March 1971. A shadow corrected rough surface thermal emission model was least squares fitted to the data. Results indicate an effective lunar dielectric constant of 1.34 + or -.08 with surface roughness characterized by a standard deviation of surface slopes of 18 deg + or - 2 deg. A comparison of these results with previously published values at other wavelengths suggests that the effective lunar dielectric constant decreases with decreasing wavelength
- …