3,932 research outputs found
Two Major Medicinal Honeys Have Different Mechanisms of Bactericidal Activity
Honey is increasingly valued for its antibacterial activity, but knowledge regarding the mechanism of action is still incomplete. We assessed the bactericidal activity and mechanism of action of Revamil® source (RS) honey and manuka honey, the sources of two major medical-grade honeys. RS honey killed Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa within 2 hours, whereas manuka honey had such rapid activity only against B. subtilis. After 24 hours of incubation, both honeys killed all tested bacteria, including methicillin-resistant Staphylococcus aureus, but manuka honey retained activity up to higher dilutions than RS honey. Bee defensin-1 and H2O2 were the major factors involved in rapid bactericidal activity of RS honey. These factors were absent in manuka honey, but this honey contained 44-fold higher concentrations of methylglyoxal than RS honey. Methylglyoxal was a major bactericidal factor in manuka honey, but after neutralization of this compound manuka honey retained bactericidal activity due to several unknown factors. RS and manuka honey have highly distinct compositions of bactericidal factors, resulting in large differences in bactericidal activity
Modeling Slope Instability as Shear Rupture Propagation in a Saturated Porous Medium
When a region of intense shear in a slope is much thinner than other relevant geometric lengths, this shear failure may be approximated as localized slip, as in faulting, with strength determined by frictional properties of the sediment and effective stress normal to the failure surface. Peak and residual frictional strengths of submarine sediments indicate critical slope angles well above those of most submarine slopes—in contradiction to abundant failures. Because deformation of sediments is governed by effective stress, processes affecting pore pressures are a means of strength reduction. However, common methods of exami ning slope stability neglect dynamically variable pore pressure during failure. We examine elastic-plastic models of the capped Drucker-Prager type and derive approximate equations governing pore pressure about a slip surface when the adjacent material may deform plastically. In the process we identify an elastic-plastic hydraulic diffusivity with an evolving permeability and plastic storage term analogous to the elastic term of traditional poroelasticity. We also examine their application to a dynamically propagating subsurface rupture and find indications of downslope directivity.Earth and Planetary SciencesEngineering and Applied Science
Denitrification and nitrous oxide emissions from riparian forests soils exposed to prolonged nitrogen runoff
Compared to upland forests, riparian forest soils have greater potential to remove nitrate (NO3) from agricultural run-off through denitrification. It is unclear, however, whether prolonged exposure of riparian soils to nitrogen (N) loading will affect the rate of denitrification and its end products. This research assesses the rate of denitrification and nitrous oxide (N2O) emissions from riparian forest soils exposed to prolonged nutrient run-off from plant nurseries and compares these to similar forest soils not exposed to nutrient run-off. Nursery run-off also contains high levels of phosphate (PO4). Since there are conflicting reports on the impact of PO4 on the activity of denitrifying microbes, the impact of PO4 on such activity was also investigated. Bulk and intact soil cores were collected from N-exposed and non-exposed forests to determine denitrification and N2O emission rates, whereas denitrification potential was determined using soil slurries. Compared to the non-amended treatment, denitrification rate increased 2.7- and 3.4-fold when soil cores collected from both N-exposed and non-exposed sites were amended with 30 and 60 μg NO3-N g-1 soil, respectively. Net N2O emissions were 1.5 and 1.7 times higher from the N-exposed sites compared to the non-exposed sites at 30 and 60 μg NO3-N g-1 soil amendment rates, respectively. Similarly, denitrification potential increased 17 times in response to addition of 15 μg NO3-N g-1 in soil slurries. The addition of PO4 (5 μg PO4–P g-1) to soil slurries and intact cores did not affect denitrification rates. These observations suggest that prolonged N loading did not affect the denitrification potential of the riparian forest soils; however, it did result in higher N2O emissions compared to emission rates from non-exposed forests
Minimally invasive surgery for diabetic plantar foot ulcerations
Complications of diabetes mellitus constitute the most common indications for hospitalization and non-traumatic amputations in the USA. The most important risk factors for the development of diabetic foot ulcerations include the presence of peripheral neuropathy, vasculopathy, limited joint mobility, and pre-existing foot deformities. In our study, 500 diabetic patients treated for plantar forefoot ulcerations were enrolled in a prospective study from 2000 to 2008 at the Federal University of São Paulo, Brazil. Fifty-two patients in the study met the criteria and underwent surgical treatment consisting of percutaneous Achilles tendon lengthening to treat plantar forefoot ulcerations. The postoperative follow-up demonstrated prevention of recurrent foot ulcerations in 92% of these diabetic patients that maintained an improved foot function. In conclusion, our study supports that identification and treatment of ankle equinus in the diabetic population may potentially lead to decreased patient morbidity, including reduced risk for both reulceration, and potential lower extremity amputation
The what and where of adding channel noise to the Hodgkin-Huxley equations
One of the most celebrated successes in computational biology is the
Hodgkin-Huxley framework for modeling electrically active cells. This
framework, expressed through a set of differential equations, synthesizes the
impact of ionic currents on a cell's voltage -- and the highly nonlinear impact
of that voltage back on the currents themselves -- into the rapid push and pull
of the action potential. Latter studies confirmed that these cellular dynamics
are orchestrated by individual ion channels, whose conformational changes
regulate the conductance of each ionic current. Thus, kinetic equations
familiar from physical chemistry are the natural setting for describing
conductances; for small-to-moderate numbers of channels, these will predict
fluctuations in conductances and stochasticity in the resulting action
potentials. At first glance, the kinetic equations provide a far more complex
(and higher-dimensional) description than the original Hodgkin-Huxley
equations. This has prompted more than a decade of efforts to capture channel
fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of
these approaches, while intuitively appealing, produce quantitative errors when
compared to kinetic equations; others, as only very recently demonstrated, are
both accurate and relatively simple. We review what works, what doesn't, and
why, seeking to build a bridge to well-established results for the
deterministic Hodgkin-Huxley equations. As such, we hope that this review will
speed emerging studies of how channel noise modulates electrophysiological
dynamics and function. We supply user-friendly Matlab simulation code of these
stochastic versions of the Hodgkin-Huxley equations on the ModelDB website
(accession number 138950) and
http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl
Author correction: High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia
In this Article, in the section entitled ‘Quantitative real-time PCR’ within the Supplementary Methods, the probe for the Bacteroides fragilis 16S real-time PCR reaction was listed incorrectly as 5ʹHEX-AGGGACTGGAAGGCTTTACTGCTTC-3ʹBHQ1. The correct probe for Bacteroides fragilis 16S should be listed as 5ʹHEX-ACACGTATCCAACCTGCCCTTTACTCG-3ʹBHQ1. The mistake was a result of a copy and paste error with a different primer set targeting a B. fragilis toxin gene. All qPCR reactions were performed using the correct probe, and therefore no data were affected
Bio-Benchmarking of Electronic Nose Sensors
BACKGROUND:Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of limited utility. The manner in which odorant space is sampled is a critical factor in the performance of all noses but so far it has been described in detail only for the fly antenna. METHODOLOGY:Here we describe how a set of metal oxide (MOx) E-Nose sensors, which is the most commonly used type, samples odorant space and compare it with what is known about fly odorant receptors (ORs). PRINCIPAL FINDINGS:Compared with a fly's odorant receptors, MOx sensors from an electronic nose are on average more narrowly tuned but much more highly correlated with each other. A set of insect ORs can therefore sample broader regions of odorant space independently and redundantly than an equivalent number of MOx sensors. The comparison also highlights some important questions about the molecular nature of fly ORs. CONCLUSIONS:The comparative approach generates practical learnings that may be taken up by solid-state physicists or engineers in designing new solid-state electronic nose sensors. It also potentially deepens our understanding of the performance of the biological system
Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium.
BACKGROUND: Invasive fungal diseases (IFDs) remain important causes of morbidity and mortality. The consensus definitions of the Infectious Diseases Group of the European Organization for Research and Treatment of Cancer and the Mycoses Study Group have been of immense value to researchers who conduct clinical trials of antifungals, assess diagnostic tests, and undertake epidemiologic studies. However, their utility has not extended beyond patients with cancer or recipients of stem cell or solid organ transplants. With newer diagnostic techniques available, it was clear that an update of these definitions was essential. METHODS: To achieve this, 10 working groups looked closely at imaging, laboratory diagnosis, and special populations at risk of IFD. A final version of the manuscript was agreed upon after the groups' findings were presented at a scientific symposium and after a 3-month period for public comment. There were several rounds of discussion before a final version of the manuscript was approved. RESULTS: There is no change in the classifications of "proven," "probable," and "possible" IFD, although the definition of "probable" has been expanded and the scope of the category "possible" has been diminished. The category of proven IFD can apply to any patient, regardless of whether the patient is immunocompromised. The probable and possible categories are proposed for immunocompromised patients only, except for endemic mycoses. CONCLUSIONS: These updated definitions of IFDs should prove applicable in clinical, diagnostic, and epidemiologic research of a broader range of patients at high-risk
The Impact of Venous Thromboembolism on Risk of Death or Hemorrhage in Older Cancer Patients
BACKGROUND: Among older cancer patients, there is uncertainty about the degree to which venous thromboembolism (VTE) and its treatment increase the risk of death or major hemorrhage. OBJECTIVE: To determine the prevalence of VTE in a cohort of older cancer patients, as well as the degree to which VTE increased the risk of death or major hemorrhage. METHODS: We conducted a retrospective cohort study of linked Surveillance, Epidemiology, and End Results cancer registry and Medicare administrative claims data. Patients with any of ten invasive cancers diagnosed during 1995 through 1999 were included; the independent variable was VTE diagnosed concomitantly with cancer diagnosis. Outcomes included major hemorrhage during the first year after cancer diagnosis and all-cause mortality; RESULTS: Overall, about 1% of patients who were diagnosed with cancer also had a VTE diagnosed concomitantly. After adjusting for sociodemographic factors and cancer stage and grade, concomitant VTE was associated with a relative increase in the risk of death for 8 of the 10 cancer types; the increase in risk tended to range 20–40% across most cancer types. Approximately 16.8% (95% confidence interval [CI] 14.9–18.8%) of patients with a concomitant VTE and 7.9% (95% CI 7.7–8.0%) of patients without a VTE experienced a major hemorrhage during the year after cancer diagnosis (P value <.001). The excess risk of hemorrhage associated with VTE varied substantially across cancer types, ranging from no significant excess (kidney and uterine cancer) to 11.5% (lymphoma). CONCLUSION: Concomitant VTE is not only a marker and potential mediator of increased risk of death among older cancer patients, but patients with a VTE have a marked increased risk of major hemorrhage
Planetary Dynamics and Habitable Planet Formation In Binary Star Systems
Whether binaries can harbor potentially habitable planets depends on several
factors including the physical properties and the orbital characteristics of
the binary system. While the former determines the location of the habitable
zone (HZ), the latter affects the dynamics of the material from which
terrestrial planets are formed (i.e., planetesimals and planetary embryos), and
drives the final architecture of the planets assembly. In order for a habitable
planet to form in a binary star system, these two factors have to work in
harmony. That is, the orbital dynamics of the two stars and their interactions
with the planet-forming material have to allow terrestrial planet formation in
the habitable zone, and ensure that the orbit of a potentially habitable planet
will be stable for long times. We have organized this chapter with the same
order in mind. We begin by presenting a general discussion on the motion of
planets in binary stars and their stability. We then discuss the stability of
terrestrial planets, and the formation of potentially habitable planets in a
binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in
Binary Star Systems (Ed. N. Haghighipour, Springer publishing company
- …