605 research outputs found

    The transition between hole-pairs and four-hole clusters in four-leg tJ ladders

    Full text link
    Holes weakly doped into a four-leg \tj ladder bind in pairs. At dopings exceeding a critical doping of δc1/8\delta_c\simeq {1/8} four hole clusters are observed to form in DMRG calculations. The symmetry of the ground state wavefunction does not change and we are able to reproduce this behavior qualitatively with an effective bosonic model in which the four-leg ladder is represented as two coupled two-leg ladders and hole-pairs are mapped on hard core bosons moving along and between these ladders. At lower dopings, δ<δc\delta<\delta_c, a one dimensional bosonic representation for hole-pairs works and allows us to calculate accurately the Luttinger liquid parameter \krho, which takes the universal value \krho=1 as half-filling is approached

    A Bosonic Model of Hole Pairs

    Full text link
    We numerically investigate a bosonic representation for hole pairs on a two-leg t-J ladder where hard core bosons on a chain represent the hole pairs on the ladder. The interaction between hole pairs is obtained by fitting the density profile obtained with the effective model to the one obtained with the \tj model, taking into account the inner structure of the hole pair given by the hole-hole correlation function. For these interactions we calculate the Luttinger liquid parameter, which takes the universal value Kρ=1K_{\rho}=1 as half filling is approached, for values of the rung exchange JJ' between strong coupling and the isotropic case. The long distance behavior of the hole-hole correlation function is also investigated. Starting from large JJ', the correlation length first increases as expected, but diminishes significantly as JJ' is reduced and bound holes sit mainly on adjacent rungs. As the isotropic case is approached, the correlation length increases again. This effect is related to the different kind of bonds in the region between the two holes of a hole pair when they move apart.Comment: 11 page

    Numerical renormalization group study of the 1D t-J model

    Full text link
    The one-dimensional (1D) tJt-J model is investigated using the density matrix renormalization group (DMRG) method. We report for the first time a generalization of the DMRG method to the case of arbitrary band filling and prove a theorem with respect to the reduced density matrix that accelerates the numerical computation. Lastly, using the extended DMRG method, we present the ground state electron momentum distribution, spin and charge correlation functions. The 3kF3k_F anomaly of the momentum distribution function first discussed by Ogata and Shiba is shown to disappear as JJ increases. We also argue that there exists a density-independent JcJ_c beyond which the system becomes an electron solid.Comment: Wrong set of figures were put in the orginal submissio

    Phase diagram of a coupled tetrahedral Heisenberg model

    Full text link
    The phase diagram of a coupled tetrahedral Heisenberg model is obtained. The quantum chain has a local gauge symmetry and its eigenspectrum is obtained by the composition of the eigenspectra of spin-1/2 XXZ chains with arbitrary distribution of spin-3/2 impurities. The phase diagram is quite rich with an infinite number of phases with ferromagnetic, antiferromagnetic or ferrimagnetic order. In some cases the ground state and the low lying eigenlevels of the model can be exactly calculated since they coincide with the eigenlevels of the exactly integrable XXZ chain. The thermodynamical properties of the model at low temperatures is also studied through finite-size analysis.Comment: 23 pages, 15 figure

    Differences Between Hole and Electron Doping of a Two-Leg CuO Ladder

    Full text link
    Here we report results of a density-matrix-renormalization-group (DMRG) calculation of the charge, spin, and pairing properties of a two-leg CuO Hubbard ladder. The outer oxygen atoms as well as the rung and leg oxygen atoms are included along with near-neighbor and oxygen-hopping matrix elements. This system allows us to study the effects of hole and electron doping on a system which is a charge transfer insulator at a filling of one hole per Cu and exhibits power law, d-wave-like pairing correlations when doped. In particular, we focus on the differences between doping with holes or electrons.Comment: REVTEX 4, 10 pages, 13 figure

    Alignment of galaxy spins in the vicinity of voids

    Full text link
    We provide limits on the alignment of galaxy orientations with the direction to the void center for galaxies lying near the edges of voids. We locate spherical voids in volume limited samples of galaxies from the Sloan Digital Sky Survey using the HB inspired void finder and investigate the orientation of (color selected) spiral galaxies that are nearly edge-on or face-on. In contrast with previous literature, we find no statistical evidence for departure from random orientations. Expressed in terms of the parameter c, introduced by Lee & Pen to describe the strength of such an alignment, we find that c<0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy model that assumes a perfectly spherical voids with sharp boundaries.Comment: 8 pages, 4 figures; v2 discussion expanded, references fixed, matches version accepted by JCA

    Antiferromagnetically coupled alternating spin chains

    Full text link
    The effect of antiferromagnetic interchain coupling in alternating spin (1,1/2) chains is studied by mean of a spin wave theory and density matrix renormalization group (DMRG). In particular, two limiting cases are investigated, the two-leg ladder and its two dimensional (2D) generalization. Results of the ground state properties like energy, spin gap, magnetizations, and correlation functions are reported for the whole range of the interchain coupling JJ_{\perp}. For the 2D case the spin wave results predict a smooth dimensional crossover from 1D to 2D keeping the ground state always ordered. For the ladder system, the DMRG results show that any J>0J_{\perp}>0 drives the system to a gapped ground state. Furthermore the behaviour of the correlation functions closely resemble the uniform spin-1/2 ladder. For JJ_{\perp} lower than 0.3, however, the gap behaves quadratically as Δ0.6J2\Delta\sim0.6 J^2_{\perp}. Finally, it is argued that the behaviour of the spin gap for an arbitrary number of mixed coupled spin chains is analogous to that of the uniform spin-1/2 chains.Comment: 5 pages, 7 ps-figure

    From antiferromagnetism to d-wave superconductivity in the 2D t-J model

    Full text link
    We have found that the two dimensional t-J model, for the physical parameter range J/t = 0.4 reproduces the main experimental qualitative features of High-Tc copper oxide superconductors: d-wave superconducting correlations are strongly enhanced upon small doping and clear evidence of off diagonal long range order is found at the optimal doping \delta ~ 0.15. On the other hand antiferromagnetic long range order, clearly present at zero hole doping, is suppressed at small hole density with clear absence of antiferromagnetism at \delta >~ 0.1.Comment: 4 pages, 5 figure

    Memory deficits following neonatal critical illness: A common neurodevelopmental pathway

    Get PDF
    Summary Over the last decade, knowledge has emerged that children growing up after neonatal critical illness, irrespective of underlying diagnosis, are at risk of memory impairment and school problems. Strikingly, these problems are manifest even when intelligence is normal. In this review, we propose a common neurodevelopmental pathway following neonatal critical illness by demonstrating that the survivors of preterm birth, congenital heart disease, and severe respiratory failure, share an increased risk of long-term memory deficits and associated hippocampal alterations. Rather than being a consequence of underlying diagnosis, we suggest that this shared vulnerability is most likely related to common conditions associated with neonatal critical illness. These include hypoxia, neuroinflammation, stress, exposure to anaesthetics, or a complex interplay of these factors at different postconceptional ages. Future work should be aimed at improving early identification of patients at risk and evaluating intervention modalities, such as cognitive or exercise training

    Socialization of prosocial behavior: Gender differences in the mediating role of child brain volume

    Get PDF
    Evidence has been accumulating for the impact of normal variation in caregiving quality on brain morphology in children, but the question remains whether differences in brain volume related to early caregiving translate to behavioral implications. In this longitudinal population-based study (N = 162), moderated mediation was tested for the relation between parental sensitivity and child prosocial behavior via brain volume, in boys and girls. Both maternal and paternal sensitivity were repeatedly observed between 1 and 4 years of age. Brain volume was assessed using magnetic resonance imaging measurements at age 8, and self-reported prosocial behavior of children was assessed at 9 years of age. Parental sensitivity was positively related to child brain volume, and to child prosocial behavior at trend level. Child brain volume was negatively related to child prosocial behavior. A significant gender-by-brain interaction was found, illustrating that daughters of sensitive parents were more prosocial and that less prosocial behavior was reported for girls with a larger total brain volume. Child gender significantly moderated the indirect effect of parental sensitivity on prosocial behavior via total brain volume. A significant indirect pathway was found only in girls. The results warrant replication but indicate the importance of considering gender when studying the behavioral implications of differences in brain volume related to early caregiving experiences
    corecore