608 research outputs found
The transition between hole-pairs and four-hole clusters in four-leg tJ ladders
Holes weakly doped into a four-leg \tj ladder bind in pairs. At dopings
exceeding a critical doping of four hole clusters are
observed to form in DMRG calculations. The symmetry of the ground state
wavefunction does not change and we are able to reproduce this behavior
qualitatively with an effective bosonic model in which the four-leg ladder is
represented as two coupled two-leg ladders and hole-pairs are mapped on hard
core bosons moving along and between these ladders. At lower dopings,
, a one dimensional bosonic representation for hole-pairs
works and allows us to calculate accurately the Luttinger liquid parameter
\krho, which takes the universal value \krho=1 as half-filling is
approached
A Bosonic Model of Hole Pairs
We numerically investigate a bosonic representation for hole pairs on a
two-leg t-J ladder where hard core bosons on a chain represent the hole pairs
on the ladder. The interaction between hole pairs is obtained by fitting the
density profile obtained with the effective model to the one obtained with the
\tj model, taking into account the inner structure of the hole pair given by
the hole-hole correlation function. For these interactions we calculate the
Luttinger liquid parameter, which takes the universal value as
half filling is approached, for values of the rung exchange between strong
coupling and the isotropic case. The long distance behavior of the hole-hole
correlation function is also investigated. Starting from large , the
correlation length first increases as expected, but diminishes significantly as
is reduced and bound holes sit mainly on adjacent rungs. As the isotropic
case is approached, the correlation length increases again. This effect is
related to the different kind of bonds in the region between the two holes of a
hole pair when they move apart.Comment: 11 page
Numerical renormalization group study of the 1D t-J model
The one-dimensional (1D) model is investigated using the density matrix
renormalization group (DMRG) method. We report for the first time a
generalization of the DMRG method to the case of arbitrary band filling and
prove a theorem with respect to the reduced density matrix that accelerates the
numerical computation. Lastly, using the extended DMRG method, we present the
ground state electron momentum distribution, spin and charge correlation
functions. The anomaly of the momentum distribution function first
discussed by Ogata and Shiba is shown to disappear as increases. We also
argue that there exists a density-independent beyond which the system
becomes an electron solid.Comment: Wrong set of figures were put in the orginal submissio
Phase diagram of a coupled tetrahedral Heisenberg model
The phase diagram of a coupled tetrahedral Heisenberg model is obtained. The
quantum chain has a local gauge symmetry and its eigenspectrum is obtained by
the composition of the eigenspectra of spin-1/2 XXZ chains with arbitrary
distribution of spin-3/2 impurities. The phase diagram is quite rich with an
infinite number of phases with ferromagnetic, antiferromagnetic or
ferrimagnetic order. In some cases the ground state and the low lying
eigenlevels of the model can be exactly calculated since they coincide with the
eigenlevels of the exactly integrable XXZ chain. The thermodynamical properties
of the model at low temperatures is also studied through finite-size analysis.Comment: 23 pages, 15 figure
Differences Between Hole and Electron Doping of a Two-Leg CuO Ladder
Here we report results of a density-matrix-renormalization-group (DMRG)
calculation of the charge, spin, and pairing properties of a two-leg CuO
Hubbard ladder. The outer oxygen atoms as well as the rung and leg oxygen atoms
are included along with near-neighbor and oxygen-hopping matrix elements. This
system allows us to study the effects of hole and electron doping on a system
which is a charge transfer insulator at a filling of one hole per Cu and
exhibits power law, d-wave-like pairing correlations when doped. In particular,
we focus on the differences between doping with holes or electrons.Comment: REVTEX 4, 10 pages, 13 figure
Alignment of galaxy spins in the vicinity of voids
We provide limits on the alignment of galaxy orientations with the direction
to the void center for galaxies lying near the edges of voids. We locate
spherical voids in volume limited samples of galaxies from the Sloan Digital
Sky Survey using the HB inspired void finder and investigate the orientation of
(color selected) spiral galaxies that are nearly edge-on or face-on. In
contrast with previous literature, we find no statistical evidence for
departure from random orientations. Expressed in terms of the parameter c,
introduced by Lee & Pen to describe the strength of such an alignment, we find
that c<0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy
model that assumes a perfectly spherical voids with sharp boundaries.Comment: 8 pages, 4 figures; v2 discussion expanded, references fixed, matches
version accepted by JCA
Antiferromagnetically coupled alternating spin chains
The effect of antiferromagnetic interchain coupling in alternating spin
(1,1/2) chains is studied by mean of a spin wave theory and density matrix
renormalization group (DMRG). In particular, two limiting cases are
investigated, the two-leg ladder and its two dimensional (2D) generalization.
Results of the ground state properties like energy, spin gap, magnetizations,
and correlation functions are reported for the whole range of the interchain
coupling . For the 2D case the spin wave results predict a smooth
dimensional crossover from 1D to 2D keeping the ground state always ordered.
For the ladder system, the DMRG results show that any drives the
system to a gapped ground state. Furthermore the behaviour of the correlation
functions closely resemble the uniform spin-1/2 ladder. For lower
than 0.3, however, the gap behaves quadratically as . Finally, it is argued that the behaviour of the spin gap for an
arbitrary number of mixed coupled spin chains is analogous to that of the
uniform spin-1/2 chains.Comment: 5 pages, 7 ps-figure
From antiferromagnetism to d-wave superconductivity in the 2D t-J model
We have found that the two dimensional t-J model, for the physical parameter
range J/t = 0.4 reproduces the main experimental qualitative features of
High-Tc copper oxide superconductors: d-wave superconducting correlations are
strongly enhanced upon small doping and clear evidence of off diagonal long
range order is found at the optimal doping \delta ~ 0.15. On the other hand
antiferromagnetic long range order, clearly present at zero hole doping, is
suppressed at small hole density with clear absence of antiferromagnetism at
\delta >~ 0.1.Comment: 4 pages, 5 figure
Memory deficits following neonatal critical illness: A common neurodevelopmental pathway
Summary
Over the last decade, knowledge has emerged that children growing up after neonatal critical illness, irrespective of underlying diagnosis, are at risk of memory impairment and school problems. Strikingly, these problems are manifest even when intelligence is normal. In this review, we propose a common neurodevelopmental pathway following neonatal critical illness by demonstrating that the survivors of preterm birth, congenital heart disease, and severe respiratory failure, share an increased risk of long-term memory deficits and associated hippocampal alterations. Rather than being a consequence of underlying diagnosis, we suggest that this shared vulnerability is most likely related to common conditions associated with neonatal critical illness. These include hypoxia, neuroinflammation, stress, exposure to anaesthetics, or a complex interplay of these factors at different postconceptional ages. Future work should be aimed at improving early identification of patients at risk and evaluating intervention modalities, such as cognitive or exercise training
Socialization of prosocial behavior: Gender differences in the mediating role of child brain volume
Evidence has been accumulating for the impact of normal variation in caregiving quality on brain morphology in children, but the question remains whether differences in brain volume related to early caregiving translate to behavioral implications. In this longitudinal population-based study (N = 162), moderated mediation was tested for the relation between parental sensitivity and child prosocial behavior via brain volume, in boys and girls. Both maternal and paternal sensitivity were repeatedly observed between 1 and 4 years of age. Brain volume was assessed using magnetic resonance imaging measurements at age 8, and self-reported prosocial behavior of children was assessed at 9 years of age. Parental sensitivity was positively related to child brain volume, and to child prosocial behavior at trend level. Child brain volume was negatively related to child prosocial behavior. A significant gender-by-brain interaction was found, illustrating that daughters of sensitive parents were more prosocial and that less prosocial behavior was reported for girls with a larger total brain volume. Child gender significantly moderated the indirect effect of parental sensitivity on prosocial behavior via total brain volume. A significant indirect pathway was found only in girls. The results warrant replication but indicate the importance of considering gender when studying the behavioral implications of differences in brain volume related to early caregiving experiences
- …