12 research outputs found

    Quantum random number generation using a solid state single photon source

    Full text link
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. In this work we couple bright room-Temperature single-photon emission from a hexagonal boron nitride atomic defect into a laser-written photonic chip. We perform single photon state manipulation with evanescently coupled waveguides acting as a multiple beam splitter, and generate a superposition state maintaining single photon purity. We demonstrate that such states can be utilized for quantum random number generation

    Quasi-BIC Resonant Enhancement of Second-Harmonic Generation in WS2 Monolayers.

    Full text link
    Atomically thin monolayers of transition metal dichalcogenides (TMDs) have emerged as a promising class of novel materials for optoelectronics and nonlinear optics. However, the intrinsic nonlinearity of TMD monolayers is weak, limiting their functionalities for nonlinear optical processes such as frequency conversion. Here we boost the effective nonlinear susceptibility of a TMD monolayer by integrating it with a resonant dielectric metasurface that supports pronounced optical resonances with high quality factors: bound states in the continuum (BICs). We demonstrate that a WS2 monolayer combined with a silicon metasurface hosting BICs exhibits enhanced second-harmonic intensity by more than 3 orders of magnitude relative to a WS2 monolayer on top of a flat silicon film of the same thickness. Our work suggests a pathway to employ high-index dielectric metasurfaces as hybrid structures for enhancement of TMD nonlinearities with applications in nonlinear microscopy, optoelectronics, and signal processing

    Tomography of quantum dots in a non-hermitian photonic chip

    Full text link
    © 2019 IEEE. Quantum optical information systems offer the potential for secure communication and fast quantum computation. To fully characterise a quantum optical system one has to use quantum tomography [1]. Integration of quantum optics onto photonic chips provides advantages such as miniaturisation and stability, and also significantly improves quantum tomography using both re-configurable [2], and more recently, simpler static designs [3,4]. These on-chip designs have, so far, only used probabilistic single photon sources. Here we are working towards quantum tomography using a true deterministic source - a quantum dot. The scheme of the proposed experiment is shown in Fig. 1A. So far we have fabricated and characterised the performance of an InGaAs quantum dot monolithically integrated into a microlens [5], and completed the design, fabrication and classical characterisation of a photonic chip for quantum tomography

    Tomography of quantum dots in a non-hermitian photonic chip

    Full text link
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. Quantum optical information systems offer the potential for secure communication and fast quantum computation. To fully characterise a quantum optical system one has to use quantum tomography.1 The integration of quantum optics onto photonic chips provides advantages such as miniaturisation and stability, significantly improving quantum tomography using both re-configurable, and more recently, simpler static designs. These on-chip designs have, so far, only used probabilistic single photon sources. Here we are working towards quantum tomography using a true deterministic source-an InGaAs quantum dot

    Analysis of anapole resonators in low index materials

    Full text link
    Photonic cavities are valued in current research owing to the multitude of linear and nonlinear effects arising from densely confined light. Cavity designs consisting of low loss dielectric materials can achieve significant light confinement. Until now, the basic concepts in all-dielectric photonics such as anapole resonances have been primarily studied in high index materials. Here, we use photonic simulation to propose fabricable designs for higher confinement in low index dielectric cavities by incorporating the extensively studied isolated dielectric nanodisk into broader host structures. We further discuss on hexagonal boron nitride nanodisks for their potential use in quantum and nanophotonics applications

    Bottom-Up Synthesis of Single Crystal Diamond Pyramids Containing Germanium Vacancy Centers

    Full text link
    Diamond resonators containing color-centers are highly sought after for application in quantum technologies. Bottom-up approaches are promising for the generation of single-crystal diamond structures with purposely introduced color centers. Here the possibility of using a polycrystalline diamond to grow single-crystal diamond structures by employing a pattern growth method is demonstrated. For, the possible mechanism of growing a single-crystal structure with predefined shape and size from a polycrystalline substrate by controlling the growth condition is clarified. Then, by introducing germanium impurities during the growth, localized and enhanced emission from fabricated pyramid shaped single-crystal diamonds containing germanium vacancy (GeV) color centers is demonstrated. Finally, linewidth of ∼500 MHz at 4 K from a single GeV center in the pyramid shaped diamonds is measured. The method is an important step toward fabrication of 3D structures for integrated diamond photonics

    Coherence Properties of Electron-Beam-Activated Emitters in Hexagonal Boron Nitride under Resonant Excitation

    Full text link
    Two-dimensional (2D) materials are becoming increasingly popular as a platform for studies of quantum phenomena and for the production of prototype quantum technologies. Quantum emitters in 2D materials can host two-level systems that can act as qubits for quantum information processing. Here, we characterize the behavior of position-controlled quantum emitters in hexagonal boron nitride at cryogenic temperatures. Over two dozen sites, we observe an ultranarrow distribution of the zero phonon line at approximately 436 nm, together with strong linearly polarized emission. We employ resonant excitation to characterize the emission lineshape and find spectral diffusion and phonon broadening contribute to linewidths in the range 1-2 GHz. Rabi oscillations are observed at a range of resonant excitation powers, and under 1-μW excitation a coherent superposition is maintained up to 0.90 ns. Our results are promising for future employment of quantum emitters in h-BN for scalable quantum technologies

    Electrical control of quantum emitters in a Van der Waals heterostructure.

    Full text link
    Controlling and manipulating individual quantum systems in solids underpins the growing interest in the development of scalable quantum technologies. Recently, hexagonal boron nitride (hBN) has garnered significant attention in quantum photonic applications due to its ability to host optically stable quantum emitters. However, the large bandgap of hBN and the lack of efficient doping inhibits electrical triggering and limits opportunities to study the electrical control of emitters. Here, we show an approach to electrically modulate quantum emitters in an hBN-graphene van der Waals heterostructure. We show that quantum emitters in hBN can be reversibly activated and modulated by applying a bias across the device. Notably, a significant number of quantum emitters are intrinsically dark and become optically active at non-zero voltages. To explain the results, we provide a heuristic electrostatic model of this unique behavior. Finally, employing these devices we demonstrate a nearly-coherent source with linewidths of ~160 MHz. Our results enhance the potential of hBN for tunable solid-state quantum emitters for the growing field of quantum information science

    Enhanced Emission from Interlayer Excitons Coupled to Plasmonic Gap Cavities.

    Full text link
    The emergence of interlayer excitons (IEs) from atomic layered transition metal dichalcogenides (TMDCs) heterostructures has drawn tremendous attention due to their unique and exotic optoelectronic properties. Coupling the IEs into optical cavities provides distinctive electromagnetic environments which plays an important role in controlling multiple optical processes such as optical nonlinear generation or photoluminescence enhancement. Here, the integration of IEs in TMDCs into plasmonic nanocavities based on a nanocube on a metallic mirror is reported. Spectroscopic studies reveal an order of magnitude enhancement of the IE at room temperature and a 5-time enhancement in fluorescence at cryogenic temperatures. Cavity modeling reveals that the enhancement of the emission is attributed to both increased excitation efficiency and Purcell effect from the cavity. The results show a novel method to control the excitonic processes in TMDC heterostructures to build high performance photonics and optoelectronics devices
    corecore