294 research outputs found
Infection by agnoprotein-negative mutants of polyomavirus JC and SV40 results in the release of virions that are mostly deficient in DNA content
<p>Abstract</p> <p>Background</p> <p>Human polyomavirus JC (JCV) is the etiologic agent of a brain disease, known as progressive multifocal leukoencephalopathy (PML). The JCV genome encodes a small multifunctional phospho-protein, agnoprotein, from the late coding region of the virus, whose regulatory functions in viral replication cycle remain elusive. In this work, the functional role of JCV and SV40 agnoproteins in virion release was investigated using a point mutant (Pt) of each virus, where the ATG codon of agnoprotein was mutated to abrogate its expression.</p> <p>Results</p> <p>Analysis of both viral protein expression and replication using Pt mutant of each virus revealed that both processes were substantially down-regulated in the absence of agnoprotein compared to wild-type (WT) virus. Complementation studies in cells, which are constitutively expressing JCV agnoprotein and transfected with the JCV Pt mutant genome, showed an elevation in the level of viral DNA replication near to that observed for WT. Constitutive expression of large T antigen was found to be not sufficient to compensate the loss of agnoprotein for efficient replication of neither JCV nor SV40 in vivo. Examination of the viral release process for both JCV and SV40 Pt mutants showed that viral particles are efficiently released from the infected cells in the absence of agnoprotein but were found to be mostly deficient in viral DNA content.</p> <p>Conclusions</p> <p>The results of this study provide evidence that agnoprotein plays an important role in the polyomavirus JC and SV40 life cycle. Infection by agnoprotein-negative mutants of both viruses results in the release of virions that are mostly deficient in DNA content.</p
Viruses and Human Cancers: a Long Road of Discovery of Molecular Paradigms
About a fifth of all human cancers worldwide are caused by infectious agents. In 12% of cancers, seven different viruses have been causally linked to human oncogenesis: Epstein-Barr virus, hepatitis B virus, human papillomavirus, human T-cell lymphotropic virus, hepatitis C virus, Kaposi's sarcoma herpesvirus, and Merkel cell polyomavirus. Here, we review the many molecular mechanisms of oncogenesis that have been discovered over the decades of study of these viruses. We discuss how viruses can act at different stages in the complex multistep process of carcinogenesis. Early events include their involvement in mutagenic events associated with tumor initiation such as viral integration and insertional mutagenesis as well as viral promotion of DNA damage. Also involved in tumor progression is the dysregulation of cellular processes by viral proteins, and we describe how this has been investigated by studies in cell culture and in experimental animals and by molecular cellular approaches. Also important are the molecular mechanisms whereby viruses interact with the immune system and the immune evasion strategies that have evolved
Measurements of Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Measurements of transverse energy flow are presented for neutral current
deep-inelastic scattering events produced in positron-proton collisions at
HERA. The kinematic range covers squared momentum transfers Q^2 from 3.2 to
2,200 GeV^2, the Bjorken scaling variable x from 8.10^{-5} to 0.11 and the
hadronic mass W from 66 to 233 GeV. The transverse energy flow is measured in
the hadronic centre of mass frame and is studied as a function of Q^2, x, W and
pseudorapidity. A comparison is made with QCD based models. The behaviour of
the mean transverse energy in the central pseudorapidity region and an interval
corresponding to the photon fragmentation region are analysed as a function of
Q^2 and W.Comment: 26 pages, 8 figures, submitted to Eur. Phys.
Searches at HERA for Squarks in R-Parity Violating Supersymmetry
A search for squarks in R-parity violating supersymmetry is performed in e^+p
collisions at HERA at a centre of mass energy of 300 GeV, using H1 data
corresponding to an integrated luminosity of 37 pb^(-1). The direct production
of single squarks of any generation in positron-quark fusion via a Yukawa
coupling lambda' is considered, taking into account R-parity violating and
conserving decays of the squarks. No significant deviation from the Standard
Model expectation is found. The results are interpreted in terms of constraints
within the Minimal Supersymmetric Standard Model (MSSM), the constrained MSSM
and the minimal Supergravity model, and their sensitivity to the model
parameters is studied in detail. For a Yukawa coupling of electromagnetic
strength, squark masses below 260 GeV are excluded at 95% confidence level in a
large part of the parameter space. For a 100 times smaller coupling strength
masses up to 182 GeV are excluded.Comment: 32 pages, 14 figures, 3 table
Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s
A precise measurement of the inclusive deep-inelastic e^+p scattering cross
section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and
3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in
1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The
double differential cross section, from which the proton structure function
F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is
measured with typically 1% statistical and 3% systematic uncertainties. The
measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise
continuously towards small x for fixed Q^2. The cross section data are combined
with published H1 measurements at high Q^2 for a next-to-leading order DGLAP
QCD analysis.The H1 data determine the gluon momentum distribution in the range
3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20
GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS
collaboration allows the strong coupling constant alpha_s and the gluon
distribution to be simultaneously determined. A value of alpha
_s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with
an additional theoretical uncertainty of about +-0.005, mainly due to the
uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table
Leishmanicidal Metabolites from Cochliobolus sp., an Endophytic Fungus Isolated from Piptadenia adiantoides (Fabaceae)
Protozoan parasites belonging to genera Leishmania and Trypanosoma are the etiological agents of severe neglected tropical diseases (NTDs) that cause enormous social and economic impact in many countries of tropical and sub-tropical areas of the world. In our screening program for new drug leads from natural sources, we found that the crude extract of the endophytic fungus Cochliobolus sp. (UFMGCB-555) could kill 90% of the amastigote-like forms of Leishmania amazonensis and inhibit by 100% Ellman's reagent reduction in the trypanothione reductase (TryR) assay, when tested at 20 µg mL−1. UFMGCB-555 was isolated from the plant Piptadenia adiantoides J.F. Macbr (Fabaceae) and identified based on the sequence of the internally transcribed spacer (ITS) regions of its ribosomal DNA. The chromatographic fractionation of the extract was guided by the TryR assay and resulted in the isolation of cochlioquinone A and isocochlioquinone A. Both compounds were active in the assay with L. amazonensis, disclosing EC50 values (effective concentrations required to kill 50% of the parasite) of 1.7 µM (95% confidence interval = 1.6 to 1.9 µM) and 4.1 µM (95% confidence interval = 3.6 to 4.7 µM), respectively. These compounds were not active against three human cancer cell lines (MCF-7, TK-10, and UACC-62), indicating some degree of selectivity towards the parasites. These results suggest that cochlioquinones are attractive lead compounds that deserve further investigation aiming at developing new drugs to treat leishmaniasis. The findings also reinforce the role of endophytic fungi as an important source of compounds with potential to enter the pipeline for drug development against NTDs
A classification system for teachers’ motivational behaviors recommended in self-determination theory interventions
Teachers’ behavior is a key factor that influences students’ motivation. Many theoretical models have tried to explain this influence, with one of the most thoroughly researched being self-determination theory (SDT). We used a Delphi method to create a classification of teacher behaviors consistent with SDT. This is useful because SDT-based interventions have been widely used to improve educational outcomes. However, these interventions contain many components. Reliably classifying and labeling those components is essential for implementation, reproducibility, and evidence synthesis. We used an international expert panel (N = 34) to develop this classification system. We started by identifying behaviors from existing literature, then refined labels, descriptions, and examples using the Delphi panel’s input. Next, the panel of experts iteratively rated the relevance of each behavior to SDT, the psychological need that each behavior influenced, and its likely effect on motivation. To create a mutually exclusive and collectively exhaustive list of behaviors, experts nominated overlapping behaviors that were redundant, and suggested new ones missing from the classification. After three rounds, the expert panel agreed upon 57 teacher motivational behaviors (TMBs) that were consistent with SDT. For most behaviors (77%), experts reached consensus on both the most relevant psychological need and influence on motivation. Our classification system provides a comprehensive list of TMBs and consistent terminology in how those behaviors are labeled. Researchers and practitioners designing interventions could use these behaviors to design interventions, to reproduce interventions, to assess whether these behaviors moderate intervention effects, and could focus new research on areas where experts disagreed. (PsycInfo Database Record (c) 2023 APA, all rights reserved
A classification system for teachers’ motivational behaviors recommended in self-determination theory interventions.
Teachers’ behavior is a key factor that influences students’ motivation. Many theoretical models have tried to explain this influence, with one of the most thoroughly researched being self-determination theory (SDT). We used a Delphi method to create a classification of teacher behaviors consistent with SDT. This is useful because SDT-based interventions have been widely used to improve educational outcomes. However, these interventions contain many components. Reliably classifying and labeling those components is essential for implementation, reproducibility, and evidence synthesis.We used an international expert panel (N = 34) to develop this classification system. We started by identifying behaviors from existing literature, then refined labels, descriptions, and examples using the Delphi panel’s input. Next, the panel of experts iteratively rated the relevance of each behavior to SDT, the psychological need that each behavior influenced, and its likely effect on motivation. To create a mutually exclusive and collectively exhaustive list of behaviors, experts nominated overlapping behaviors that were redundant, and suggested new ones missing from the classification. After three rounds, the expert panel agreed upon 57 teacher motivational behaviors (TMBs) that were consistent with SDT. For most behaviors (77%), experts reached consensus on both the most relevant psychological need and influence on motivation. Our classification system provides a comprehensive list of TMBs and consistent terminology in how those behaviors are labeled. Researchers and practitioners designing interventions could use these behaviors to design interventions, to reproduce interventions, to assess whether these behaviors moderate intervention effects, and could focus new research on areas where experts disagreed
- …