110,350 research outputs found
Modelling of the dip-coating process
Dipcoating, wherein an object is withdrawn from a liquid bath, retaining a thin layer of liquid which then dries, is perhaps the simplest of coating techniques. SOLA Optical asked the MISG to investigate this process as a means of applying a protective coating to spectacle lenses. The theory, as proposed by the group, involves the 'lubrication' form of the equations of slow viscous flow. This yields an estimate of the wet coating thickness variation, which in turn depends on the liquid properties, the pull rate, and the lens curvature. When this thickness is reduced by the volatile fraction of the coating, predicted thicknesses are in rough agreement with reported values. Once applied, the liquid film drains downward and this effect is modelled numerically. An outline of a more complete model, allowing evaporation and drying, is also presented
Dual towline spin-recovery device
A device which corrects aerodynamic spin is described wherein a parachute exerts antispin forces on an aircraft to effect spin recovery. The dual parachute towlines and are each attached to the parachute and are attached to the rear fuselage equidistant to and on opposite sides of the aircraft centerline. As the parachute is deployed during spin, the parachute force acts through only the towing and exerts its force outboard of center on the aircraft. As a result, the parachute exerts not only an antispin torque, but additionally causes the aircraft to roll, creating a gyroscopic antispin rolling moment. The additional antispin rolling moment facilitates spin recovery by permitting a relatively smaller parachute to accomplish spin recovery equivalent to that of a larger parachute attached to the center of the rear fuselage
NASTRAN applications to aircraft propulsion systems
The use of NASTRAN in propulsion system structural integration analysis is described. Computer support programs for modeling, substructuring, and plotting analysis results are discussed. Requirements on interface information and data exchange by participants in a NASTRAN substructure analysis are given. Static and normal modes vibration analysis results are given with comparison to test and other analytical results
Enteral feeding pumps: efficacy, safety, and patient acceptability.
Enteral feeding is a long established practice across pediatric and adult populations, to enhance nutritional intake and prevent malnutrition. Despite recognition of the importance of nutrition within the modern health agenda, evaluation of the efficacy of how such feeds are delivered is more limited. The accuracy, safety, and consistency with which enteral feed pump systems dispense nutritional formulae are important determinants of their use and acceptability. Enteral feed pump safety has received increased interest in recent years as enteral pumps are used across hospital and home settings. Four areas of enteral feed pump safety have emerged: the consistent and accurate delivery of formula; the minimization of errors associated with tube misconnection; the impact of continuous feed delivery itself (via an enteral feed pump); and the chemical composition of the casing used in enteral feed pump manufacture. The daily use of pumps in delivery of enteral feeds in a home setting predominantly falls to the hands of parents and caregivers. Their understanding of the use and function of their pump is necessary to ensure appropriate, safe, and accurate delivery of enteral nutrition; their experience with this is important in informing clinicians and manufacturers of the emerging needs and requirements of this diverse patient population. The review highlights current practice and areas of concern and establishes our current knowledge in this field
PVC autoclave model
The batch reaction of polyvinyl chloride (PVC) in a pressure autoclave is modelled by considering the various mechanisms for conversion from vinyl chloride monomer (VCM) to the polymer during the middle phase of the industrial process. A key step is to determine at what stage the droplets of VCM stop contracting because of the density difference between VCM and PVC - this is known as the 'freeze point'. A model is proposed that locates the freeze point as that point where the unfavourable energy due to wetting of the PVC by water is dominated by the energy required to compress the gel network inside the droplets. Preliminary investigations support this explanation and suggest avenues for further work. A corollary of this model is an explanation of the role of 'secondary granulating agents' in controlling the porosity of the final product
Phase space simulation of collisionless stellar systems on the massively parallel processor
A numerical technique for solving the collisionless Boltzmann equation describing the time evolution of a self gravitating fluid in phase space was implemented on the Massively Parallel Processor (MPP). The code performs calculations for a two dimensional phase space grid (with one space and one velocity dimension). Some results from calculations are presented. The execution speed of the code is comparable to the speed of a single processor of a Cray-XMP. Advantages and disadvantages of the MPP architecture for this type of problem are discussed. The nearest neighbor connectivity of the MPP array does not pose a significant obstacle. Future MPP-like machines should have much more local memory and easier access to staging memory and disks in order to be effective for this type of problem
- …