906 research outputs found
Fast Ensemble Smoothing
Smoothing is essential to many oceanographic, meteorological and hydrological
applications. The interval smoothing problem updates all desired states within
a time interval using all available observations. The fixed-lag smoothing
problem updates only a fixed number of states prior to the observation at
current time. The fixed-lag smoothing problem is, in general, thought to be
computationally faster than a fixed-interval smoother, and can be an
appropriate approximation for long interval-smoothing problems. In this paper,
we use an ensemble-based approach to fixed-interval and fixed-lag smoothing,
and synthesize two algorithms. The first algorithm produces a linear time
solution to the interval smoothing problem with a fixed factor, and the second
one produces a fixed-lag solution that is independent of the lag length.
Identical-twin experiments conducted with the Lorenz-95 model show that for lag
lengths approximately equal to the error doubling time, or for long intervals
the proposed methods can provide significant computational savings. These
results suggest that ensemble methods yield both fixed-interval and fixed-lag
smoothing solutions that cost little additional effort over filtering and model
propagation, in the sense that in practical ensemble application the additional
increment is a small fraction of either filtering or model propagation costs.
We also show that fixed-interval smoothing can perform as fast as fixed-lag
smoothing and may be advantageous when memory is not an issue
Dissolved organic carbon transformations and microbial community response to variations in recharge waters in a shallow carbonate aquifer
© 2016, The Author(s). In carbonate aquifers, dissolved organic carbon from the surface drives heterotrophic metabolism, generating CO2 in the subsurface. Although this has been a proposed mechanism for enhanced dissolution at the water table, respiration rates and their controlling factors have not been widely evaluated. This study investigates the composition and concentration of dissolved organic carbon (DOC) reaching the water table from different recharge pathways on a subtropical carbonate island using a combination of DOC concentration measurements, fluorescence and absorption characterisation. In addition, direct measurements of the microbial response to the differing water types were made. Interactions of rainfall with the vegetation, via throughfall and stemflow, increase the concentration of DOC. The highest DOC concentrations are associated with stemflow, overland recharge and dissolution hole waters which interact with bark lignin and exhibit strong terrestrial-derived characteristics. The groundwater samples exhibit the lowest concentrations of DOC and are comprised of refractory humic-like organic matter. The heterotrophic response seems to be controlled by the concentration of DOC in the sample. The terrestrially sourced humic-like matter in the stemflow and dissolution hole samples was highly labile, thus increasing the amount of biologically produced CO2 to drive dissolution. Based on the calculated respiration rates, microbial activity could enhance carbonate dissolution, increasing porosity generation by a maximum of 1%kyr−1 at the top of the freshwater lens
Validation and application of an ensemble Kalman filter in the Selat Pauh of Singapore
The effectiveness of an ensemble Kalman filter (EnKF) is assessed in the Selat Pauh of Singapore using observing system simulation experiment. Perfect model experiments are first considered. The perfect model experiments examine the EnKF in reducing the initial perturbations with no further errors than those in the initial conditions. Current velocity at 15 observational sites from the true ocean is assimilated every hour into the false ocean. While EnKF reduces the initial velocity error during the first few hours, it fails after one tidal cycle (approximately 12 h) due to the rapid convergence of the ensemble members. Successively, errors are introduced in the surface wind forcing. A random perturbation ε [epsilon] is applied independently to each ensemble member to maintain the ensemble spread. The assimilation results showed that the success of EnKF depends critically on the presence of ε [epsilon], yet it is not sensitive to the magnitude of ε [epsilon], at least in the range of weak to moderate perturbations. Although all experiments were made with EnKF only, the results could be applicable in general to all other ensemble-based data assimilation methods.United States. Office of Naval ResearchSingapore. National Research FoundationSingapore-MIT Alliance for Research and Technology CenterSingapore-MIT Alliance. Center for Environmental Sensing and Monitorin
Hereditary sensory neuropathy type I
Hereditary sensory neuropathy type I (HSN I) is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances) are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7) identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN), especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra neuropathy, or decaying skin tumours like amelanotic melanoma. Management of HSN I follows the guidelines given for diabetic foot care (removal of pressure to the ulcer and eradication of infection, followed by the use of specific protective footwear) and starts with early and accurate counselling of patients about risk factors for developing foot ulcerations. The disorder is slowly progressive and does not influence life expectancy but is often severely disabling after a long duration of the disease
Sampling of cereals and cereal-based foods for the determination of ochratoxin A: an overview
The mycotoxin ochratoxin A (OTA) is known to be heterogeneously distributed both intrinsically (from one individual food item to the next) as well as distributionally (throughout a sample of individual food items) in cereals and cereal-based foods. Therefore, proper sampling and sample comminution are special challenges, but are prerequisites for obtaining sound analytical data. This paper outlines the issue of the sampling process for cereals and cereal-based foods, starting with the planning phase, followed by the sampling step itself and the formation of analytical samples. The sampling of whole grain and retail-level cereal-based foods will be discussed. Furthermore, possibilities to reduce sampling variance are presented
Search for time-dependent B0s - B0s-bar oscillations using a vertex charge dipole technique
We report a search for B0s - B0s-bar oscillations using a sample of 400,000
hadronic Z0 decays collected by the SLD experiment. The analysis takes
advantage of the electron beam polarization as well as information from the
hemisphere opposite that of the reconstructed B decay to tag the B production
flavor. The excellent resolution provided by the pixel CCD vertex detector is
exploited to cleanly reconstruct both B and cascade D decay vertices, and tag
the B decay flavor from the charge difference between them. We exclude the
following values of the B0s - B0s-bar oscillation frequency: Delta m_s < 4.9
ps-1 and 7.9 < Delta m_s < 10.3 ps-1 at the 95% confidence level.Comment: 18 pages, 3 figures, replaced by version accepted for publication in
Phys.Rev.D; results differ slightly from first versio
- …