124 research outputs found

    Hirudo Medicinalis and the plastic surgeon

    Get PDF
    Medicinal leech therapy is an ancient craft that dates back to ancient Egypt and the beginnings of civilisation. The popularity of Hirudo Medicinalis has varied throughout history, reaching such a peak in Europe in the early 19th century that supplies were exhausted. During the latter half of the 19th century, their use fell out of favour, as they did not fit in with the emerging concepts of modern medicine. Leeches have enjoyed a renaissance in the world of reconstructive microsurgery during recent years, and their first reported use in alleviating venous engorgement following flap surgery was reported in this journal [M Derganc, F Zdravic, Venous congestion of flaps treated by application of leeches, Br J Plast Surg 13 (1960) 187]. Contemporary plastic and reconstructive surgeons in units throughout the United Kingdom and Ireland continue to use leeches to aid salvage of failing flaps. We carried out a survey of all 62 plastic surgery units in the United Kingdom and the Republic of Ireland to assess the current extent of use, and to investigate current practice. We have shown that the majority of plastic surgery units in the UK and Ireland use leeches post-operatively and that the average number of patients requiring leech therapy was 10 cases per unit per year. Almost all units use antibiotic prophylaxis, but the type of antibiotic and combination used is variable. We outline current practice and suggest a protocol for the use of leeches. Whilst the use of leeches is widespread, the plastic surgery community has progressed little in defining indications for their use or in achieving an accepted protocol for their application in units throughout the UK and Irelan

    Nanotechnology for Stimulating Osteoprogenitor Differentiation.

    Get PDF
    BACKGROUND: Bone is the second most transplanted tissue and due to its complex structure, metabolic demands and various functions, current reconstructive options such as foreign body implants and autologous tissue transfer are limited in their ability to restore defects. Most tissue engineering approaches target osteoinduction of osteoprogenitor cells by modifying the extracellular environment, using scaffolds or targeting intracellular signaling mechanisms or commonly a combination of all of these. Whilst there is no consensus as to what is the optimal cell type or approach, nanotechnology has been proposed as a powerful tool to manipulate the biomolecular and physical environment to direct osteoprogenitor cells to induce bone formation. METHODS: Review of the published literature was undertaken to provide an overview of the use of nanotechnology to control osteoprogenitor differentiation and discuss the most recent developments, limitations and future directions. RESULTS: Nanotechnology can be used to stimulate osteoprogenitor differentiation in a variety of way. We have principally classified research into nanotechnology for bone tissue engineering as generating biomimetic scaffolds, a vector to deliver genes or growth factors to cells or to alter the biophysical environment. A number of studies have shown promising results with regards to directing ostroprogenitor cell differentiation although limitations include a lack of in vivo data and incomplete characterization of engineered bone. CONCLUSION: There is increasing evidence that nanotechnology can be used to direct the fate of osteoprogenitor and promote bone formation. Further analysis of the functional properties and long term survival in animal models is required to assess the maturity and clinical potential of this

    Role of hydrogen peroxide in intra-operative wound preparation based on an in vitro fibrin clot degradation model

    Get PDF
    Three per cent hydrogen peroxide (H2O2) is widely used to irrigate acute and chronic wounds in the surgical setting and clinical experience tells us that it is more effective at removing dried-on blood than normal saline alone. We hypothesise that this is due to the effect of H2O2 on fibrin clot architecture via fibrinolysis. We investigate the mechanisms and discuss the clinical implications using an in vitro model. Coagulation assays with normal saline (NaCl), 1% and 3% concentrations of H2O2 were performed to determine the effect on fibrin clot formation. These effects were confirmed by spectrophotometry. The effects of 1%, 3% and 10% H2O2 on the macroscopic and microscopic features of fibrin clots were assessed at set time intervals and compared to a NaCl control. Quantitative analysis of fibrin networks was undertaken to determine the fibre length, diameter, branch point density and pore size. Fibrin clots immersed in 1%, 3% and 10% H2O2 demonstrated volume losses of 0.09-0.25mm3/min, whereas those immersed in the normal saline gained in volume by 0.02±0.13 mm3/min. Quantitative analysis showed that H2O2 affects the structure of the fibrin clot in a concentration-dependent manner, with the increase in fibre length, diameter and consequently pore sizes. Our results support our hypothesis that the efficacy of H2O2 in cleaning blood from wounds is enhanced by its effects on fibrin clot architecture in a concentration- and time-dependent manner. The observed changes in fibre size and branch point density suggest that H2O2 is acting on the quaternary structure of the fibrin clot, most likely via its effect on cross-linking of the fibrin monomers and may therefore be of benefit for the removal of other fibrin-dependent structures such as wound slough

    “3D Bioprinting for Reconstructive Surgery: Principles, Applications and Challenges”

    Get PDF
    Despite the increasing laboratory research in the growing field of 3D bioprinting, there are few reports of successful translation into surgical practice. This review outlines the principles of 3D bioprinting including software and hardware processes, biocompatible technological platforms and suitable bioinks. The advantages of 3D bioprinting over traditional tissue engineering techniques in assembling cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissue macro-, micro- and nanoarchitectures are discussed, together with an overview of current progress in bioprinting tissue types relevant for plastic and reconstructive surgery. If successful, this platform technology has the potential to biomanufacture autologous tissue for reconstruction, obviating the need for donor sites or immunosuppression. The biological, technological and regulatory challenges are highlighted, with strategies to overcome these challenges by using an integrated approach from the fields of engineering, biomaterial science, cell biology and reconstructive microsurgery

    From monogenic to polygenic obesity: recent advances

    Get PDF
    The heritability of obesity and body weight in general is high. A small number of confirmed monogenic forms of obesity—the respective mutations are sufficient by themselves to cause the condition in food abundant societies—have been identified by molecular genetic studies. The elucidation of these genes, mostly based on animal and family studies, has led to the identification of important pathways to the disorder and thus to a deeper understanding of the regulation of body weight. The identification of inborn deficiency of the mostly adipocyte-derived satiety hormone leptin in extremely obese children from consanguineous families paved the way to the first pharmacological therapy for obesity based on a molecular genetic finding. The genetic predisposition to obesity for most individuals, however, has a polygenic basis. A polygenic variant by itself has a small effect on the phenotype; only in combination with other predisposing variants does a sizeable phenotypic effect arise. Common variants in the first intron of the ‘fat mass and obesity associated’ gene (FTO) result in an elevated body mass index (BMI) equivalent to approximately +0.4 kg/m² per risk allele. The FTO variants were originally detected in a genome wide association study (GWAS) pertaining to type 2 diabetes mellitus. Large meta-analyses of GWAS have subsequently identified additional polygenic variants. Up to December 2009, polygenic variants have been confirmed in a total of 17 independent genomic regions. Further study of genetic effects on human body weight regulation should detect variants that will explain a larger proportion of the heritability. The development of new strategies for diagnosis, treatment and prevention of obesity can be anticipated

    Regional Histopathology and Prostate MRI Positivity: A Secondary Analysis of the PROMIS Trial.

    Full text link
    Background The effects of regional histopathologic changes on prostate MRI scans have not been accurately quantified in men with an elevated prostate-specific antigen (PSA) level and no previous biopsy. Purpose To assess how Gleason grade, maximum cancer core length (MCCL), inflammation, prostatic intraepithelial neoplasia (PIN), or atypical small acinar proliferation within a Barzell zone affects the odds of MRI visibility. Materials and Methods In this secondary analysis of the Prostate MRI Imaging Study (PROMIS; May 2012 to November 2015), consecutive participants who underwent multiparametric MRI followed by a combined biopsy, including 5-mm transperineal mapping (TPM), were evaluated. TPM pathologic findings were reported at the whole-prostate level and for each of 20 Barzell zones per prostate. An expert panel blinded to the pathologic findings reviewed MRI scans and declared which Barzell areas spanned Likert score 3-5 lesions. The relationship of Gleason grade and MCCL to zonal MRI outcome (visible vs nonvisible) was assessed using generalized linear mixed-effects models with random intercepts for individual participants. Inflammation, PIN, and atypical small acinar proliferation were similarly assessed in men who had negative TPM results. Results Overall, 161 men (median age, 62 years [IQR, 11 years]) were evaluated and 3179 Barzell zones were assigned MRI status. Compared with benign areas, the odds of MRI visibility were higher when a zone contained cancer with a Gleason score of 3+4 (odds ratio [OR], 3.1; 95% CI: 1.9, 4.9; P < .001) or Gleason score greater than or equal to 4+3 (OR, 8.7; 95% CI: 4.5, 17.0; P < .001). MCCL also determined visibility (OR, 1.24 per millimeter increase; 95% CI: 1.15, 1.33; P < .001), but odds were lower with each prostate volume doubling (OR, 0.7; 95% CI: 0.5, 0.9). In men who were TPM-negative, the presence of PIN increased the odds of zonal visibility (OR, 3.7; 95% CI: 1.5, 9.1; P = .004). Conclusion An incremental relationship between cancer burden and prostate MRI visibility was observed. Prostatic intraepithelial neoplasia contributed to false-positive MRI findings. ClinicalTrials.gov registration no. NCT01292291 © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Harmath in this issue

    Associations between severity of obesity in childhood and adolescence, obesity onset and parental BMI: a longitudinal cohort study

    Get PDF
    Objective: To explore the relationship between severity of obesity at age 7 and age 15, age at onset of obesity, and parental body mass index (BMI) in obese children and adolescents. Design: Longitudinal cohort study.Subjects:Obese children (n231) and their parents (n462) from the Swedish National Childhood Obesity Centre. Methods: Multivariate regression analyses were applied with severity of obesity (BMI standard deviation score (BMI SDS)) and onset of obesity as dependent variables. The effect of parental BMI was evaluated and in the final models adjusted for gender, parental education, age at onset of obesity, severity of obesity at age 7 and obesity treatment. Results: For severity of obesity at age 7, a positive correlation with maternal BMI was indicated (P<0.05). Severity of obesity at this age also showed a strong negative correlation with the age at onset of obesity. Severity of obesity at age 15 was significantly correlated with both maternal and paternal BMI (P≥0.01). In addition, BMI SDS at age 15 differed by gender (higher for boys) and was positively correlated with severity of obesity at age 7 and negatively correlated with treatment. Also, a negative correlation was indicated at this age for parental education. No correlation with age at onset was found at age 15. For age at onset of obesity there was no relevant correlation with parental BMI. Children within the highest tertile of the BMI SDS range were more likely to have two obese parents. Conclusion: The impact of parental BMI on the severity of obesity in children is strengthened as the child grows into adolescence, whereas the age at onset is probably of less importance than previously thought. The influence of parental relative weight primarily affects the severity of childhood obesity and not the timing. © 2011 Macmillan Publishers Limited All rights reserved.link_to_subscribed_fulltex

    Live Tissue Imaging Shows Reef Corals Elevate pH under Their Calcifying Tissue Relative to Seawater

    Get PDF
    The threat posed to coral reefs by changes in seawater pH and carbonate chemistry (ocean acidification) raises the need for a better mechanistic understanding of physiological processes linked to coral calcification. Current models of coral calcification argue that corals elevate extracellular pH under their calcifying tissue relative to seawater to promote skeleton formation, but pH measurements taken from the calcifying tissue of living, intact corals have not been achieved to date. We performed live tissue imaging of the reef coral Stylophora pistillata to determine extracellular pH under the calcifying tissue and intracellular pH in calicoblastic cells. We worked with actively calcifying corals under flowing seawater and show that extracellular pH (pHe) under the calicoblastic epithelium is elevated by ∼0.5 and ∼0.2 pH units relative to the surrounding seawater in light and dark conditions respectively. By contrast, the intracellular pH (pHi) of the calicoblastic epithelium remains stable in the light and dark. Estimates of aragonite saturation states derived from our data indicate the elevation in subcalicoblastic pHe favour calcification and may thus be a critical step in the calcification process. However, the observed close association of the calicoblastic epithelium with the underlying crystals suggests that the calicoblastic cells influence the growth of the coral skeleton by other processes in addition to pHe modification. The procedure used in the current study provides a novel, tangible approach for future investigations into these processes and the impact of environmental change on the cellular mechanisms underpinning coral calcification

    Hand disease in scleroderma: a clinical correlate for chronic hand transplant rejection

    Get PDF
    Chronic rejection remains a potential long-term consequence of hand composite tissue allotransplantation (CTA). Scleroderma has already been proposed as a model for chronic facial allograft rejection based on potential parallels of observed progression of disease and pathophysiology course. This study proposes a similar model for how chronic rejection may manifest itself in the context of hand CTA through the functional and psychological assessment of patients with scleroderma, should it occur

    Association Analysis of the FTO Gene with Obesity in Children of Caucasian and African Ancestry Reveals a Common Tagging SNP

    Get PDF
    Recently an association was demonstrated between the single nucleotide polymorphism (SNP), rs9939609, within the FTO locus and obesity as a consequence of a genome wide association (GWA) study of type 2 diabetes in adults. We examined the effects of two perfect surrogates for this SNP plus 11 other SNPs at this locus with respect to our childhood obesity cohort, consisting of both Caucasians and African Americans (AA). Utilizing data from our ongoing GWA study in our cohort of 418 Caucasian obese children (BMI≥95th percentile), 2,270 Caucasian controls (BMI<95th percentile), 578 AA obese children and 1,424 AA controls, we investigated the association of the previously reported variation at the FTO locus with the childhood form of this disease in both ethnicities. The minor allele frequencies (MAF) of rs8050136 and rs3751812 (perfect surrogates for rs9939609 i.e. both r2 = 1) in the Caucasian cases were 0.448 and 0.443 respectively while they were 0.391 and 0.386 in Caucasian controls respectively, yielding for both an odds ratio (OR) of 1.27 (95% CI 1.08–1.47; P = 0.0022). Furthermore, the MAFs of rs8050136 and rs3751812 in the AA cases were 0.449 and 0.115 respectively while they were 0.436 and 0.090 in AA controls respectively, yielding an OR of 1.05 (95% CI 0.91–1.21; P = 0.49) and of 1.31 (95% CI 1.050–1.643; P = 0.017) respectively. Investigating all 13 SNPs present on the Illumina HumanHap550 BeadChip in this region of linkage disequilibrium, rs3751812 was the only SNP conferring significant risk in AA. We have therefore replicated and refined the association in an AA cohort and distilled a tag-SNP, rs3751812, which captures the ancestral origin of the actual mutation. As such, variants in the FTO gene confer a similar magnitude of risk of obesity to children as to their adult counterparts and appear to have a global impact
    corecore