3 research outputs found

    Angular relationships regulate coordination tendencies of performers in attacker–defender dyads in team sports

    Get PDF
    This study examined the continuous interpersonal interactions of performers in dyadic systems in team sports, as a function of changing information constraints. As a task vehicle, we investigated how attackers attained success in 1v1 sub-phases of basketball by exploring angular relations with immediate opponents and the basket. We hypothesized that angular relations would convey information for the attackers to dribble past defenders. Four basketball players performed as an attacker and defender in 1v1 sub-phases of basketball, in which the co-positioning and orientation of participants relative to the basket was manipulated. After video recording performance behaviors, we digitized participant movement displacement trajectories and categorized trials as successful or unsuccessful (from the attackers’ viewpoint). Results revealed that, to successfully dribble past a defender, attackers tended to explore the left hand side of the space by defenders by increasing their angular velocity and decreasing their angular variability, especially in the center of the court. Interpersonal interactions and goal-achievement in attacker–defender dyads appear to have been constrained by the angular relations sustained between participants relative to the scoring target. Results revealed the functionality of exploratory behaviors of participants attempting re-align spatial relations with an opponent in 1v1 sub-phases of team games

    Phleum pratense pollen starch granules induce humoral and cell mediated immune responses in a rat model of allergy

    Full text link
    International audienceTimothy grass (Phleum pratense) pollen allergens are an important cause of allergic symptoms. However, pollen grains are too large to penetrate the deeper airways. Grass pollen is known to release allergen-bearing starch granules (SG) upon contact with water. These granules can create an inhalable allergenic aerosol capable of triggering an early asthmatic response and are implicated in thunderstorm-associated asthma. We studied the humoral (IgE) and bronchial lymph node cells reactivities to SG from timothy grass pollen in pollen-sensitized rats. Brown-Norway rats were sensitized (day 0) and challenged (day 21) intratracheally with intact pollen and kept immunized by pollen intranasal instillation by 4 weeks intervals during 3 months. Blood and bronchial lymph nodes were collected 7 days after the last intranasal challenge. SG were purified from fresh timothy grass pollen using 5 mum mesh filters. To determine the humoral response (IgE) to SG, we developed an original ELISA inhibition test, based on competition between pollen allergens and purified SG. The cell-mediated response to SG in the bronchial lymph node cells was determined by measuring the uptake of [H-3]thymidine in a proliferation assay. An antibody response to SG was induced, and purified SG were able to inhibit the IgE ELISA absorbance by 45 %. Pollen extract and intact pollen gave inhibitions of 55 % and 52 %, respectively. A cell-mediated response was also found, as pollen extract, intact pollen and SG triggered proliferation of bronchial lymph node cells. It was confirmed that timothy grass pollen contains allergen-loaded SG, which are released upon contact with water. These granules were shown to be recognized by pollen-sensitized rats sera and to trigger lymph node cell proliferation in these rats. These data provide new arguments supporting the implication of grass pollen SG in allergic asthma
    corecore