104 research outputs found

    Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry

    Get PDF
    BACKGROUND: The new Ocular Dynamic Contour Tonometer (DCT), investigational device supplied by SMT (Swiss Microtechnology AG, Switzerland) allows simultaneous recording of intraocular pressure (IOP) and ocular pulse amplitude (OPA). It was the aim of this study to compare the IOP results of this new device with Goldmann tonometry. Furthermore, IOP and OPA measured with the new slitlamp-mounted DCT were compared to the IOP and OPA measured with the hand-held SmartLens(®), a gonioscopic contact lens tonometer (ODC Ophthalmic Development Company AG, Switzerland). METHODS: Nineteen healthy subjects were included in this study. IOP was determined by three consecutive measurements with each of the DCT, SmartLens(®), and Goldmann tonometer. Furthermore, OPA was measured three times consecutively by DCT and SmartLens(®). RESULTS: No difference (P = 0.09) was found between the IOP values by means of DCT (mean: 16.6 mm Hg, median: 15.33 mm Hg, SD: +/- 4.04 mm Hg) and Goldmann tonometry (mean: 16.17 mm Hg, median: 15.33 mm Hg, SD: +/- 4.03 mm Hg). The IOP values of SmartLens(® )(mean: 20.25 mm Hg, median: 19.00 mm Hg, SD: +/- 4.96 mm Hg) were significantly higher (P = 0.0008) both from Goldmann tonometry and DCT. The OPA values of the DCT (mean: 3.08 mm Hg, SD: +/- 0.92 mm Hg) were significantly lower (P = 0.0003) than those obtained by SmartLens(® )(mean: 3.92 mm Hg, SD: +/- 0.83 mm Hg). CONCLUSIONS: DCT was equivalent to Goldmann applanation tonometry in measurement of IOP in a small group of normal subjects. In contrast, SmartLens(® )(contact lens tonometry) gave IOP readings that were significantly higher compared with Goldmann applanation tonometer readings. Both devices, DCT and SmartLens(® )provide the measurement of OPA which could be helpful e.g. for the management of glaucoma

    Systematic bias in real-world tonometry readings based on laterality?

    Get PDF
    AIMS: In research settings, the first eye examined tends to have a higher intraocular pressure (IOP) than the second. We sought to verify whether clinicians in Yorkshire, UK, measure IOP in right eyes before left and whether such behavioural factors affect IOP readings at the population level. METHODS: We observed 128 IOP measurements taken by 28 ophthalmologists using Goldmann applanation tonometry (GAT) over a 4-month period in 2018, recording which eye was examined first. All IOP measurements on electronic patient records for Leeds Teaching Hospitals NHS Trust, UK, between January 2002 and June 2017 were extracted, yielding IOP readings for 562,360 eyes, analysed for evidence of systematic bias in IOP measurement. RESULTS: Right eye IOP was measured before left in 112/128 observations (87.5% (95% CI: 75.2%-94.2%)). For IOP measured by GAT, there was no statistically significant difference (p = 0.121) between right and left eye IOP (mean IOP 16.95 and 16.96 mmHg, respectively). Even values of IOP were reported more frequently than odd values (136,503/214,628 (63.6%) were even). Identical IOP readings for both eyes were recorded in 124,392/254,380 patients (48.9%) who had both eyes measured. CONCLUSIONS: Our study found no IOP difference based on laterality, but strong evidence of certain trends associated with IOP measurement by GAT, such as a preference for even values and the same IOP being recorded for both left and right eyes. Such effects may be explained by behavioural aspects of GAT and suggest that there are substantial opportunities for improvement in the way GAT is utilised in real world settings

    The CD4+ T-cell transcriptome and serum IgE in asthma: IL17RB and the role of sex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationships between total serum IgE levels and gene expression patterns in peripheral blood CD4+ T cells (in all subjects and within each sex specifically) are not known.</p> <p>Methods</p> <p>Peripheral blood CD4+ T cells from 223 participants from the Childhood Asthma Management Program (CAMP) with simultaneous measurement of IgE. Total RNA was isolated, and expression profiles were generated with Illumina HumanRef8 v2 BeadChip arrays. Modeling of the relationship between genome-wide gene transcript levels and IgE levels was performed in all subjects, and stratified by sex.</p> <p>Results</p> <p>Among all subjects, significant evidence for association between gene transcript abundance and IgE was identified for a single gene, the interleukin 17 receptor B (IL17RB), explaining 12% of the variance (r<sup>2</sup>) in IgE measurement (p value = 7 Ă— 10<sup>-7</sup>, 9 Ă— 10<sup>-3 </sup>after adjustment for multiple testing). Sex stratified analyses revealed that the correlation between IL17RB and IgE was restricted to males only (r<sup>2 </sup>= 0.19, p value = 8 Ă— 10<sup>-8</sup>; test for sex-interaction p < 0.05). Significant correlation between gene transcript abundance and IgE level was not found in females. Additionally we demonstrated substantial sex-specific differences in IgE when considering multi-gene models, and in canonical pathway analyses of IgE level.</p> <p>Conclusions</p> <p>Our results indicate that IL17RB may be the only gene expressed in CD4+ T cells whose transcript measurement is correlated with the variation in IgE level in asthmatics. These results provide further evidence sex may play a role in the genomic regulation of IgE.</p

    Changes in the Circadian Rhythm in Patients with Primary Glaucoma

    Get PDF
    Purpose The current study was undertaken to investigate whether glaucoma affects the sleep quality and whether there is any difference between patients with primary glaucoma (primary open angle glaucoma, POAG and primary angle-closure glaucoma, PACG) and healthy subjects, using a validated self-rated questionnaire, the Pittsburgh Sleep Quality Index (PSQI). Methods The sleep quality of patients with POAG and PACG was tested against normal controls. Subjects were divided into three sub-groups according to age. Differences in the frequency of sleep disturbances (PSQI score >7) were assessed. The differences of sleep quality within the three groups and within the POAG group depending on the patients’ intraocular pressure (IOP) and impairment of visual field (VF) were also studied. Results 92 POAG patients, 48 PACG patients and 199 controls were included. Sleep quality declined with age in control and POAG group (tendency chi-square, P0.05). No significant differences were found in POAG group between patients with a highest IOP in daytime and at nighttime (χ2-test, P>0.05). Conclusions The prevalence of sleep disorders was higher in patients with POAG and PACG than in controls. PACG patients seemed to have a more serious problem of sleep disorders than POAG patients between 61 to 80 years old. No correlation was found between the prevalence of sleep disorders and impairment of VF or the time when POAG patients showed a highest IOP

    Sex Differences in the Brain: A Whole Body Perspective

    Get PDF
    Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood
    • …
    corecore