26,148 research outputs found

    Combating e-discrimination in the North West - final report

    Get PDF
    The Combating eDiscimination in the North West project examined over 100 websites advertising job opportunities both regionally and nationally, and found the vast majority to be largely inaccessible. Professional standards, such as using valid W3C code and adhering to the W3C Web Content Accessibility Guidelines, were largely not followed. The project also conducted interviews with both public and private sector web professionals, and focus groups of disabled computer users, to draw a broader picture of the accessibility of jobs websites. Interviews with leading web development companies in the Greater Manchester region, showed that there is a view there should not be any additional cost in making websites accessible, as the expertise to create a site professionally should be in place from the start, and that accessibility will follow from applying professional standards. However, through the process of trying to create a website for the project, with such a company, it was found that following professional standards is not sufficient to catch all the potential problems, and that user testing is an essential adjunct to professional practice. The main findings of the project are, thus, that: • Most websites in the job opportunities sector are not following professional standards of web development, and are largely inaccessible • Professional standards of web development need to be augmented with user testing to ensure proper accessibility

    Refined Cauchy/Littlewood identities and six-vertex model partition functions: II. Proofs and new conjectures

    Full text link
    We prove two identities of Hall-Littlewood polynomials, which appeared recently in a paper by two of the authors. We also conjecture, and in some cases prove, new identities which relate infinite sums of symmetric polynomials and partition functions associated with symmetry classes of alternating sign matrices. These identities generalize those already found in our earlier paper, via the introduction of additional parameters. The left hand side of each of our identities is a simple refinement of a relevant Cauchy or Littlewood identity. The right hand side of each identity is (one of the two factors present in) the partition function of the six-vertex model on a relevant domain.Comment: 34 pages, 14 figure

    Three dimensional turbulent boundary layers: Data sets for two-space coordinate flows

    Get PDF
    Sets of data (flows) from eight original sources on three-dimensional turbulent boundary layers were reevaluated and tabulated in a common format. The flows studied were all of the type describable in only two space coordinates, e.g., flow over a swept wing of infinite span. The principal data in each set are profiles of the main and crossflow components of mean velocity. Turbulent shear stress vector profiles were available for two flows, Bradshaw and Terrell (1969) and Johnson (1970). Free stream pressure gradient, wall shear stress coefficient and angle, integral thickness and left and right hand sides of the momentum integral equations were evaluated in a consistent manner for each flow

    Discrete holomorphicity and quantized affine algebras

    Full text link
    We consider non-local currents in the context of quantized affine algebras, following the construction introduced by Bernard and Felder. In the case of Uq(A1(1))U_q(A_1^{(1)}) and Uq(A2(2))U_q(A_2^{(2)}), these currents can be identified with configurations in the six-vertex and Izergin--Korepin nineteen-vertex models. Mapping these to their corresponding Temperley--Lieb loop models, we directly identify non-local currents with discretely holomorphic loop observables. In particular, we show that the bulk discrete holomorphicity relation and its recently derived boundary analogue are equivalent to conservation laws for non-local currents

    The shape of the urine stream — from biophysics to diagnostics

    Get PDF
    We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (+-2%). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation

    Thematic mapper design parameter investigation

    Get PDF
    This study simulated the multispectral data sets to be expected from three different Thematic Mapper configurations, and the ground processing of these data sets by three different resampling techniques. The simulated data sets were then evaluated by processing them for multispectral classification, and the Thematic Mapper configuration, and resampling technique which provided the best classification accuracy were identified
    corecore