9,435 research outputs found
Salesmanship Part of Forestersâ Job
Forestry practice should become as completely a part of our state and national life as the public school system and the Post Office Department are. The United States Forest Service established in 1905 now has more than 158,000,000 acres of Government land under its direction; is cooperating with many states under the Clark-McNary Act; has charge of a number of experiment stations, and is doing intensive research and investigative work in the Madson Laboratory; forty states have Forestry Departments and thirty states have Extension Foresters, and yet, the people in general have very little idea of what is being done or what is supposed to be done along forestry lines. They know in a vague way that something is being done here and there but have little conception of the whole problem nor realize that they, themselves, have a part in it. Progress is sure to be slow and even stopped entirely in places so long as this condition exists
The existence of time
Of those gauge theories of gravity known to be equivalent to general
relativity, only the biconformal gauging introduces new structures - the
quotient of the conformal group of any pseudo-Euclidean space by its Weyl
subgroup always has natural symplectic and metric structures. Using this metric
and symplectic form, we show that there exist canonically conjugate,
orthogonal, metric submanifolds if and only if the original gauged space is
Euclidean or signature 0. In the Euclidean cases, the resultant configuration
space must be Lorentzian. Therefore, in this context, time may be viewed as a
derived property of general relativity.Comment: 21 pages (Reduced to clarify and focus on central argument; some
calculations condensed; typos corrected
Measuring Which-Path Information with Coupled Electronic Mach-Zehnder Interferometers
We theoretically investigate a generalized "which-path" measurement on an
electronic Mach-Zehnder Interferometer (MZI) implemented via Coulomb coupling
to a second electronic MZI acting as a detector. The use of contextual values,
or generalized eigenvalues, enables the precise construction of which-path
operator averages that are valid for any measurement strength from the
available drain currents. The form of the contextual values provides direct
physical insight about the measurement being performed, providing information
about the correlation strength between system and detector, the measurement
inefficiency, and the proper background removal. We find that the detector
interferometer must display maximal wave-like behavior to optimally measure the
particle-like which-path information in the system interferometer,
demonstrating wave-particle complementarity between the system and detector. We
also find that the degree of quantum erasure that can be achieved by
conditioning on a specific detector drain is directly related to the ambiguity
of the measurement. Finally, conditioning the which-path averages on a
particular system drain using the zero frequency cross-correlations produces
conditioned averages that can become anomalously large due to quantum
interference; the weak coupling limit of these conditioned averages can produce
both weak values and detector-dependent semi-weak values.Comment: 17 pages, 12 figures, published version including appendi
Experimental Test of Relativistic Quantum State Collapse with Moving Reference Frames
An experimental test of relativistic wave-packet collapse is presented. The
tested model assumes that the collapse takes place in the reference frame
determined by the massive measuring detectors. Entangled photons are measured
at 10 km distance within a time interval of less than 5 ps. The two apparatuses
are in relative motion so that both detectors, each in its own inertial
reference frame, are first to perform the measurement. The data always
reproduces the quantum correlations and thus rule out a class of collapse
models. The results also set a lower bound on the "speed of quantum
information" to 0.66 x 10^7 and 1.5 x 10^4 times the speed of light in the
Geneva and the background radiation reference frames, respectively. The very
difficult and deep question of where the collapse takes place - if it takes
place at all - is considered in a concrete experimental context.Comment: 4 pages + 2 ps figure
Uncollapsing the wavefunction by undoing quantum measurements
We review and expand on recent advances in theory and experiments concerning
the problem of wavefunction uncollapse: Given an unknown state that has been
disturbed by a generalized measurement, restore the state to its initial
configuration. We describe how this is probabilistically possible with a
subsequent measurement that involves erasing the information extracted about
the state in the first measurement. The general theory of abstract measurements
is discussed, focusing on quantum information aspects of the problem, in
addition to investigating a variety of specific physical situations and
explicit measurement strategies. Several systems are considered in detail: the
quantum double dot charge qubit measured by a quantum point contact (with and
without Hamiltonian dynamics), the superconducting phase qubit monitored by a
SQUID detector, and an arbitrary number of entangled charge qubits.
Furthermore, uncollapse strategies for the quantum dot electron spin qubit, and
the optical polarization qubit are also reviewed. For each of these systems the
physics of the continuous measurement process, the strategy required to ideally
uncollapse the wavefunction, as well as the statistical features associated
with the measurement is discussed. We also summarize the recent experimental
realization of two of these systems, the phase qubit and the polarization
qubit.Comment: 19 pages, 4 figure
Hamiltonian Formulation of Two Body Problem in Wheeler-Feynman electrodynamics
A Hamiltonian formulation for the classical problem of electromagnetic
interaction of two charged relativistic particles is found.Comment: 22 pages, 8 Uuencoded Postscript figure
Modeling Reactive Wetting when Inertial Effects are Dominant
Recent experimental studies of molten metal droplets wetting high temperature
reactive substrates have established that the majority of triple-line motion
occurs when inertial effects are dominant. In light of these studies, this
paper investigates wetting and spreading on reactive substrates when inertial
effects are dominant using a thermodynamically derived, diffuse interface model
of a binary, three-phase material. The liquid-vapor transition is modeled using
a van der Waals diffuse interface approach, while the solid-fluid transition is
modeled using a phase field approach. The results from the simulations
demonstrate an O \left( t^{-\nicefrac{1}{2}} \right) spreading rate during
the inertial regime and oscillations in the triple-line position when the metal
droplet transitions from inertial to diffusive spreading. It is found that the
spreading extent is reduced by enhancing dissolution by manipulating the
initial liquid composition. The results from the model exhibit good qualitative
and quantitative agreement with a number of recent experimental studies of
high-temperature droplet spreading, particularly experiments of copper droplets
spreading on silicon substrates. Analysis of the numerical data from the model
suggests that the extent and rate of spreading is regulated by the spreading
coefficient calculated from a force balance based on a plausible definition of
the instantaneous interface energies. A number of contemporary publications
have discussed the likely dissipation mechanism in spreading droplets. Thus, we
examine the dissipation mechanism using the entropy-production field and
determine that dissipation primarily occurs in the locality of the triple-line
region during the inertial stage, but extends along the solid-liquid interface
region during the diffusive stage
Consequences of critical interchain couplings and anisotropy on a Haldane chain
Effects of interchain couplings and anisotropy on a Haldane chain have been
investigated by single crystal inelastic neutron scattering and density
functional theory (DFT) calculations on the model compound SrNiVO.
Significant effects on low energy excitation spectra are found where the
Haldane gap (; where is the intrachain exchange
interaction) is replaced by three energy minima at different antiferromagnetic
zone centers due to the complex interchain couplings. Further, the triplet
states are split into two branches by single-ion anisotropy. Quantitative
information on the intrachain and interchain interactions as well as on the
single-ion anisotropy are obtained from the analyses of the neutron scattering
spectra by the random phase approximation (RPA) method. The presence of
multiple competing interchain interactions is found from the analysis of the
experimental spectra and is also confirmed by the DFT calculations. The
interchain interactions are two orders of magnitude weaker than the
nearest-neighbour intrachain interaction = 8.7~meV. The DFT calculations
reveal that the dominant intrachain nearest-neighbor interaction occurs via
nontrivial extended superexchange pathways Ni--O--V--O--Ni involving the empty
orbital of V ions. The present single crystal study also allows us to
correctly position SrNiVO in the theoretical - phase
diagram [T. Sakai and M. Takahashi, Phys. Rev. B 42, 4537 (1990)] showing where
it lies within the spin-liquid phase.Comment: 12 pages, 12 figures, 3 tables PRB (accepted). in Phys. Rev. B (2015
Quasinormal Modes, the Area Spectrum, and Black Hole Entropy
The results of canonical quantum gravity concerning geometric operators and
black hole entropy are beset by an ambiguity labelled by the Immirzi parameter.
We use a result from classical gravity concerning the quasinormal mode spectrum
of a black hole to fix this parameter in a new way. As a result we arrive at
the Bekenstein - Hawking expression of for the entropy of a black
hole and in addition see an indication that the appropriate gauge group of
quantum gravity is SO(3) and not its covering group SU(2).Comment: 4 pages, 2 figure
Why Nature has made a choice of one time and three space coordinates?
We propose a possible answer to one of the most exciting open questions in
physics and cosmology, that is the question why we seem to experience four-
dimensional space-time with three ordinary and one time dimensions. We have
known for more than 70 years that (elementary) particles have spin degrees of
freedom, we also know that besides spin they also have charge degrees of
freedom, both degrees of freedom in addition to the position and momentum
degrees of freedom. We may call these ''internal degrees of freedom '' the
''internal space'' and we can think of all the different particles, like quarks
and leptons, as being different internal states of the same particle. The
question then naturally arises: Is the choice of the Minkowski metric and the
four-dimensional space-time influenced by the ''internal space''?
Making assumptions (such as particles being in first approximation massless)
about the equations of motion, we argue for restrictions on the number of space
and time dimensions. (Actually the Standard model predicts and experiments
confirm that elementary particles are massless until interactions switch on
masses.)
Accepting our explanation of the space-time signature and the number of
dimensions would be a point supporting (further) the importance of the
''internal space''.Comment: 13 pages, LaTe
- âŠ