46 research outputs found

    Direct numerical simulations of a high-pressure turbine vane

    Get PDF
    In this paper, we establish a benchmark data set of a generic high-pressure (HP) turbine vane generated by direct numerical simulation (DNS) to resolve fully the flow. The test conditions for this case are a Reynolds number of 0.57 × 106 and an exit Mach number of 0.9, which is representative of a modern transonic HP turbine vane. In this study, we first compare the simulation results with previously published experimental data. We then investigate how turbulence affects the surface flow physics and heat transfer. An analysis of the development of loss through the vane passage is also performed. The results indicate that freestream turbulence tends to induce streaks within the near-wall flow, which augment the surface heat transfer. Turbulent breakdown is observed over the late suction surface, and this occurs via the growth of two-dimensional Kelvin–Helmholtz spanwise roll-ups, which then develop into lambda vortices creating large local peaks in the surface heat transfer. Turbulent dissipation is found to significantly increase losses within the trailing-edge region of the vane.Partnership for Advanced Computing in Europe (PRACE) and the UK Turbulence Consortium funded by the EPSRC under Grant No. EP/L000261/

    The effect of dense gas dynamics on loss in ORC transonic turbines

    Get PDF
    This paper describes a number of recent investigations into the effect of dense gas dynamics on ORC transonic turbine performance. We describe a combination of experimental, analytical and computational studies which are used to determine how, in-particular, trailing-edge loss changes with choice of working fluid. A Ludwieg tube transient wind-tunnel is used to simulate a supersonic base flow which mimics an ORC turbine vane trailing-edge flow. Experimental measurements of wake profiles and trailing-edge base pressure with different working fluids are used to validate high-order CFD simulations. In order to capture the correct mixing in the base region, Large-Eddy Simulations (LES) are performed and verified against the experimental data by comparing the LES with different spatial and temporal resolutions. RANS and Detached-Eddy Simulation (DES) are also compared with experimental data. The effect of different modelling methods and working fluid on mixed-out loss is then determined. Current results point at LES predicting the closest agreement with experimental results, and dense gas effects are consistently predicted to increase loss.Project supported by the EPSRC (EP/J006394/1, EP/L027437/1) and GE Global Research

    Supernova remnants: the X-ray perspective

    Get PDF
    Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mechanisms, and because they are the likely sources of Galactic cosmic rays. X-ray observations are an important means to study these objects.And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the products of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and thermal and non-thermal X-ray emission. The second half offers a review of the recent advances.The topics addressed there are core collapse and thermonuclear supernova remnants, SN 1987A, mature supernova remnants, mixed-morphology remnants, including a discussion of the recent finding of overionization in some of them, and finally X-ray synchrotron radiation and its consequences for particle acceleration and magnetic fields.Comment: Published in Astronomy and Astrophysics Reviews. This version has 2 column-layout. 78 pages, 42 figures. This replaced version has some minor language edits and several references have been correcte

    Physics on tap

    No full text
    corecore