192 research outputs found
Low Reynolds Number Nozzle Flow Study
An experimental study of low Reynolds number nozzle flow was performed. A brief comparison was made between some of the experimental performance data and performance predicted by a viscous flow code. The performance of 15, 20, and 25 deg conical nozzles, bell nozzles, and trumpet nozzles was evaluated with unheated nitrogen and hydrogen. The numerical analysis was applied to the conical nozzles only, using an existing viscous flow code that was based on a slender-channel approximation. Although the trumpet and 25 deg conical nozzles had slightly better performance at lower Reynolds numbers, it is unclear which nozzle is superior as all fell within the experimental error band. The numerical rssults were found to agree with experimental results for nitrogen and for some of the hydrogen data. Some code modification is recommended to improve confidence in the performance prediction
Slush hydrogen transfer studies at the NASA K-Site Test Facility
An experimental study was performed as part of the National Aerospace Plane (NASP) effort to determine slush hydrogen production and transfer characteristics. Flow rate and pressure drop characteristics were determined for slush hydrogen flow through a vacuum-jacketed transfer system. These characteristics were compared to similar tests using normal boiling point and triple point hydrogen. In addition, experimental flow characteristic data was compared with predictions from the FLUSH analytical model. Slush hydrogen density loss during the transfer process was also examined
Slush hydrogen propellant production, transfer, and expulsion studies at the NASA K-Site Facility
Slush hydrogen is currently being considered as a fuel for the National AeroSpace Plane (NASP) because it offers the potential for decreased vehicle size and weight. However, no large scale data was available on the production, transfer, and tank pressure control characteristics required to use the fuel for the NASP. Therefore, experiments were conducted at NASA-Lewis K-Site Facility to improve the slush hydrogen data base. Slush hydrogen was produced using the evaporative cooling, or freeze-thaw, technique in batches for approx. 800 gallons. This slush hydrogen was pressure transferred to a 5 ft diameter spherical test tank following production, and flow characteristics were measured during this transfer process. The slush hydrogen in the test tank was pressurized and expelled using a pressurized expulsion technique to obtain information on tank pressure control for the NASP. Results from the production, transfer, pressurization, and pressurized expulsion tests are described
Technology issues associated with using densified hydrogen for space vehicles
Slush hydrogen and triple-point hydrogen offer the potential for reducing the size and weight of future space vehicles because these fluids have greater densities than normal-boiling-point liquid hydrogen. In addition, these fluids have greater heat capacities, which make them attractive fuels for such applications as the National Aerospace Plane and cryogenic depots. Some of the benefits of using slush hydrogen and triple-point hydrogen for space missions are quantified. Some of the major issues associated with using these densified cryogenic fuels for space applications are examined, and the technology efforts that have been made to address many of these issues are summarized
In-situ analysis of hydrazine decomposition products
A gas analyzer utilizing a nondispersive infrared (NDIR) detection system was used to monitor the ammonia and water vapor content of the products of a previously unused hydrazine gas generator. This provided an in-situ measurement of the generator's efficiency difficult to obtain by other means. The analyzer was easily installed in both the calibration and hydrazine systems, required no maintenance other than periodic zero adjustments, and performed well for extended periods in the operating range tested. The catalyst bed operated smoothly and repeatably during the 28 hr of testing. No major transients were observed on startup or during steady state operation. The amount of ammonia in the output stream of the gas generator was found to be a strong function of temperature at catalyst bed temperatures below 450 C. At temperatures above this, the efficiency remained nearly constant. On startup the gas generator efficiency was found to decrease with time until a steady state value was attained. Elevated catalyst bed temperatures in the periods before steady state operation was found to be responsible for this phenomenon
Compatability of dispersion-strengthened platinum with resistojet propellants
Resistojets for the Space Station require long life and multipropellant capability. The choice of available materials to meet these requirements is limited. Dispersion-strengthened platinum was selected. Past results indicated that it should be suffieiently inert in candidate propellant environments and should be capable of operating at moderate temperatures for extended periods. A series of propellant compatibility tests was done with platinum strengthened with either yttria or zirconia. Data presented included the results of 1000-hr tests in CO2, H2, ammonia (NH3), N2, steam, hydrazine (N2H4), and methane (CH4); and 2000-hr tests in H2 and NH3. The platinum samples were tested at 1400 C in CO2, H2, NH3, N2, steam, and N2H4; at 500 C in CH4; and at 800 C in N2H4. The mass-loss results indicated material life, exptrapolated from experimental mass-loss data, in excess of 100 000 hr in all environments except steam and N2H4, where it was greater than or =45000 hr. Generally, on the basis of mass loss, there were no compatibility concerns in any of the environments considered. Optical and scanning electron microscopy were used to determine the effect of propellants on the material surface and to evaluate material stability
Slush hydrogen pressurized expulsion studies at the NASA K-Site Facility
An experiment test series of the slush hydrogen (SLH2) project at the NASA LeRC Plum Brook K-Site Facility was completed. This testing was done as part of the characterization and technology database development on slush hydrogen required for the National Aero-Space Plane (NASP) Program. The primary objective of these experiments was to investigate tank thermodynamic parameters during the pressurized expulsion of slush hydrogen. To accomplish this, maintenance of tank pressure control was investigated during pressurized expulsion of slush hydrogen using gaseous hydrogen and gaseous helium pressurant. In addition, expulsion tests were performed using gaseous helium for initial pressurization, then gaseous hydrogen during expulsion. These tests were conducted with and without mixing of the slush hydrogen. Results from the testing included an evaluation of tank pressure control, pressurant requirements, SLH2 density change, and system mass and energy balances
Slush Hydrogen (SLH2) technology development for application to the National Aerospace Plane (NASP)
The National Aerospace Plane (NASP) program is giving us the opportunity to reach new unique answers in a number of engineering categories. The answers are considered enhancing technology or enabling technology. Airframe materials and densified propellants are examples of enabling technology. The National Aeronautics and Space Administration's Lewis Research Center has the task of providing the technology data which will be used as the basis to decide if slush hydrogen (SLH2) will be the fuel of choice for the NASP. The objectives of this NASA Lewis program are: (1) to provide, where possible, verified numerical models of fluid production, storage, transfer, and feed systems, and (2) to provide verified design criteria for other engineered aspects of SLH2 systems germane to a NASP. This program is a multiyear multimillion dollar effort. The present pursuit of the above listed objectives is multidimensional, covers a range of problem areas, works these to different levels of depth, and takes advantage of the resources available in private industry, academia, and the U.S. Government. The NASA Lewis overall program plan is summarized. The initial implementation of the plan will be unfolded and the present level of efforts in each of the resource areas will be discussed. Results already in hand will be pointed out. A description of additionally planned near-term experimental and analytical work is described
Glutathione diminishes tributyltin- and dibutyltin-induced loss of lytic function in human natural killer cells
This study investigated whether reduced glutathione (GSH) was able to alter the negative effects of tributyltin (TBT) or dibutyltin (DBT) on the lytic function of human natural killer (NK) cells. NK cells are an initial immune defense against the development of tumors or viral infections. TBT and DBT are widespread environmental contaminants, due to their various industrial applications. Both TBT and DBT have been shown to decrease the ability of NK cells to lyse tumor cells (lytic function). The results indicated that the presence of GSH during the exposure of NK cells to TBT or DBT diminished the negative effect of the butyltin on the lytic function of NK cells. This suggests that the interaction of TBT and DBT with functionally relevant sulfhydryl groups in NK cells may be part of the mechanism by which they decrease NK lytic function
Longitudinal Education and Career Outcomes of a Cancer Research Training Program for Underrepresented Students: The Meharry-Vanderbilt-Tennessee State University Cancer Partnership
This study examined longitudinal education and career outcomes of the Meharry-Vanderbilt-Tennessee State University Cancer Partnership, the longest-running National Cancer Institute (NCI) Comprehensive Partnerships in Advancing Cancer Health Equity (CPACHE) program site in the United States. Degree completion rates were calculated and progression along the entire postsecondary “pipeline” was quantified for 204 participants recruited between 2011 and 2020. For participants who had entered the workforce, career outcomes were also analyzed. Relative to comparison data, participants completed degrees and progressed through the higher education “pipeline” to earn advanced degrees at remarkably high rates; the majority entered careers in which they support or conduct cancer research. The latter is important, because most participants identify with demographic categories currently underrepresented in the cancer research workforce. This article makes two contributions to knowledge on research training programs for underrepresented students: 1) it quantifies participants’ progression along the entire postsecondary education pipeline as well as into the workforce, and 2) it identifies points where participants are most prone to exit the pipeline rather than progress. We identify two types of exits—permanent and temporary—and offer empirically supported operational definitions for both. Evaluators may find the quantitative model and/or definitions useful for analyzing similar programs
- …