42 research outputs found

    Tristetraprolin down-regulates IL-23 expression in colon cancer cells.

    Get PDF
    mRNA 3'UTR demonstrated that the ARE cluster between the third and fifth AREs was responsible for TTP-mediated destabilization of IL-23 mRNA. A RNA electrophoretic mobility shift assay confirmed that TTP binds to this ARE cluster. Taken together, these results demonstrate that TTP acts as a negative regulator of IL-23 gene expression in mouse colon cancer cells and suggest its potential application as a novel therapeutic target to control IL-23-mediated tumor promotion

    Tristetraprolin inhibits the growth of human glioma cells through downregulation of urokinase plasminogen activator/urokinase plasminogen activator receptor mRNAs

    Get PDF
    Urokinase plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR) play a major role in the infiltrative growth of glioblastoma. Downregulatoion of the uPA and uPAR has been reported to inhibit the growth glioblastoma. Here, we demonstrate that tristetraprolin (TTP) inhibits the growth of U87MG human glioma cells through downregulation of uPA and uPAR. Our results show that expression level of TTP is inversely correlated with those of uPA and uPAR in human glioma cells and tissues. TTP binds to the AU-rich elements within the 3' untranslated regions of uPA and uPAR and overexpression of TTP decreased the expression of uPA and uPAR through enhancing the degradation of their mRNAs. In addition, overexpression of TTP inhibited the growth and invasion of U87MG cells. Our findings implicate that TTP can be used as a promising therapeutic target to treat human glioma

    Ectopic over-expression of tristetraprolin in human cancer cells promotes biogenesis of let-7 by down-regulation of Lin28

    Get PDF
    Tristetraprolin (TTP) is a AU-rich element (ARE) binding protein and exhibits suppressive effects on cell growth through down-regulation of ARE-containing oncogenes. The let-7 microRNA has emerged as a significant factor in tumor suppression. Both TTP and let-7 are often repressed in human cancers, thereby promoting oncogenesis by derepressing their target genes. In this work, an unexpected link between TTP and let-7 has been found in human cancer cells. TTP promotes an increase in expression of mature let-7, which leads to the inhibition of let-7 target gene CDC34 expression and suppresses cell growth. This event is associated with TTP-mediated inhibition of Lin28, which has emerged as a negative modulator of let-7. Lin28 mRNA contains ARE within its 3′-UTR and TTP enhances the decay of Lin28 mRNA through binding to its 3′-UTR. This suggests that the TTP-mediated down-regulation of Lin28 plays a key role in let-7 miRNA biogenesis in cancer cells

    A Nuclear Localization of the Infectious Haematopoietic Necrosis Virus NV Protein Is Necessary for Optimal Viral Growth

    Get PDF
    The nonvirion (NV) protein of infectious hematopoietic necrosis virus (IHNV) has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP), a nuclear localization of NV was demonstrated. Deletion analyses showed that the 32EGDL35 residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-ΔEGDL in which the 32EGDL35 was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV) or with the NV gene replaced with GFP (rIHNV-ΔNV-GFP) were used as controls. RTG-2 cells infected with rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.). While treatment with poly I∶C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL were inhibited by poly I∶C. In addition, both rIHNV-ΔNV and rIHNV-NV-ΔEGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of 32EGDL35 responsible for nuclear localization are important for the inhibitory activity of NV

    Pseudomonas aeruginosa Eliminates Natural Killer Cells via Phagocytosis-Induced Apoptosis

    Get PDF
    Pseudomonas aeruginosa (PA) is an opportunistic pathogen that causes the relapse of illness in immunocompromised patients, leading to prolonged hospitalization, increased medical expense, and death. In this report, we show that PA invades natural killer (NK) cells and induces phagocytosis-induced cell death (PICD) of lymphocytes. In vivo tumor metastasis was augmented by PA infection, with a significant reduction in NK cell number. Adoptive transfer of NK cells mitigated PA-induced metastasis. Internalization of PA into NK cells was observed by transmission electron microscopy. In addition, PA invaded NK cells via phosphoinositide 3-kinase (PI3K) activation, and the phagocytic event led to caspase 9-dependent apoptosis of NK cells. PA-mediated NK cell apoptosis was dependent on activation of mitogen-activated protein (MAP) kinase and the generation of reactive oxygen species (ROS). These data suggest that the phagocytosis of PA by NK cells is a critical event that affects the relapse of diseases in immunocompromised patients, such as those with cancer, and provides important insights into the interactions between PA and NK cells

    Comparison of Diclofenac or Fentanyl for Pain Following Tonsillectomy

    No full text

    Developmentally regulated GTP-binding protein 2 depletion leads to mitochondrial dysfunction through downregulation of dynamin-related protein 1

    No full text
    Mitochondrial dynamics, including constant fusion and fission, play critical roles in maintaining mitochondrial morphology and function. Here, we report that developmentally regulated GTP-binding protein 2 (DRG2) regulates mitochondrial morphology by modulating the expression of the mitochondrial fission gene dynamin-related protein 1 (Drp1). shRNA-mediated silencing of DRG2 induced mitochondrial swelling, whereas expression of an shRNA-resistant version of DRG2 decreased mitochondrial swelling in DRG2-depleted cells. Analysis of the expression levels of genes involved in mitochondrial fusion and fission revealed that DRG2 depletion significantly decreased the level of Drp1. Overexpression of Drp1 rescued the defect in mitochondrial morphology induced by DRG2 depletion. DRG2 depletion reduced the mitochondrial membrane potential, oxygen consumption rate (OCR), and amount of mitochondrial DNA (mtDNA), whereas it increased reactive oxygen species (ROS) production and apoptosis. Taken together, our data demonstrate that DRG2 acts as a regulator of mitochondrial fission by controlling the expression of Drp1. © 2017 Elsevier Inc.1

    Identification of developmental pluripotency associated 5 expression in human pluripotent stem cells

    No full text
    Pluripotent embryonic germ cells (EGCs) can be derived from the culture of primordial germ cells (PGCs). However, there are no reports of gonocytes, following the stage of PGC development, becoming stem cell lines. To analyze the gene expression differences between PGCs and gonocytes, we performed cDNA subtractive hybridization with mouse gonads containing either of the two cell populations. We confirmed that developmental pluripotency associated 5 (Dppa5), originally found in mouse embryonic stem cells (ESCs) and mouse embryonic carcinoma cells (ECCs), was strongly expressed in mouse PGCs and the expression was rapidly downregulated during germ cell development. A human sequence homologous to Dppa5 was identified by bioinformatics approaches. Interestingly, human Dppa5 was expressed only in human PGCs, human EGCs, and human ESCs and was not detected in human ECCs. Its expression was downregulated during induced differentiation of human ESCs. These findings confirmed that Dppa5 is specifically and differentially expressed in human cells that have pluripotency. The results strongly suggest that Dppa5 may have an important role in stemness in human ESCs and EGCs and also can be used as a marker of pluripotent stem cells. Human pluripotent stem cells may have their own ways to be pluripotent, as opposed to the much uniform mouse stem cells
    corecore