1,979 research outputs found
Quantum effects from a purely geometrical relativity theory
A purely geometrical relativity theory results from a construction that
produces from three-dimensional space a happy unification of Kaluza's
five-dimensional theory and Weyl's conformal theory. The theory can provide
geometrical explanations for the following observed phenomena, among others:
(a) lifetimes of elementary particles of lengths inversely proportional to
their rest masses; (b) the equality of charge magnitude among all charged
particles interacting at an event; (c) the propensity of electrons in atoms to
be seen in discretely spaced orbits; and (d) `quantum jumps' between those
orbits. This suggests the possibility that the theory can provide a
deterministic underpinning of quantum mechanics like that provided to
thermodynamics by the molecular theory of gases.Comment: 7 pages, LaTeX jpconf.cls (Institute of Physics Publishing), 6
Encapsulated PostScript figures (Fig. 6 is 1.8M uncompressed); Presented at
VI Mexican School on Gravitation and Mathematical Physics "Approaches to
Quantum Gravity
Particle phenomenology on noncommutative spacetime
We introduce particle phenomenology on the noncommutative spacetime called
the Groenewold-Moyal plane. The length scale of spcetime noncommutativity is
constrained from the CPT violation measurements in system
and difference of . The system
provides an upper bound on the length scale of spacetime noncommutativity of
the order of , corresponding to a lower energy bound
of the order of . The difference of constrains the noncommutativity length scale to be of the order of
, corresponding to a lower energy bound of the order
of .
We also present the phenomenology of the electromagnetic interaction of
electrons and nucleons at the tree level in the noncommutative spacetime. We
show that the distributions of charge and magnetization of nucleons are
affected by spacetime noncommutativity. The analytic properties of
electromagnetic form factors are also changed and it may give rise to
interesting experimental signals.Comment: 10 pages, 3 figures. Published versio
New Models of General Relativistic Static Thick Disks
New families of exact general relativistic thick disks are constructed using
the ``displace, cut, fill and reflect'' method. A class of functions used to
``fill'' the disks is derived imposing conditions on the first and second
derivatives to generate physically acceptable disks. The analysis of the
function's curvature further restrict the ranges of the free parameters that
allow phisically acceptable disks. Then this class of functions together with
the Schwarzschild metric is employed to construct thick disks in isotropic,
Weyl and Schwarzschild canonical coordinates. In these last coordinates an
additional function must be added to one of the metric coefficients to generate
exact disks. Disks in isotropic and Weyl coordinates satisfy all energy
conditions, but those in Schwarzschild canonical coordinates do not satisfy the
dominant energy condition.Comment: 27 pages, 14 figure
Implication of Compensator Field and Local Scale Invariance in the Standard Model
We introduce Weyl's scale symmetry into the standard model (SM) as a local
symmetry. This necessarily introduces gravitational interactions in addition to
the local scale invariance group \tilde U(1) and the SM groups SU(3) X SU(2) X
U(1). The only other new ingredients are a new scalar field \sigma and the
gauge field for \tilde U(1) we call the Weylon. A noteworthy feature is that
the system admits the St\" uckelberg-type compensator. The \sigma couples to
the scalar curvature as (-\zeta/2) \sigma^2 R, and is in turn related to a St\"
uckelberg-type compensator \varphi by \sigma \equiv M_P e^{-\varphi/M_P} with
the Planck mass M_P. The particular gauge \varphi = 0 in the St\" uckelberg
formalism corresponds to \sigma = M_P, and the Hilbert action is induced
automatically. In this sense, our model presents yet another mechanism for
breaking scale invariance at the classical level. We show that our model
naturally accommodates the chaotic inflation scenario with no extra field.Comment: This work is to be read in conjunction with our recent comments
hep-th/0702080, arXiv:0704.1836 [hep-ph] and arXiv:0712.2487 [hep-ph]. The
necessary ingredients for describing chaotic inflation in the SM as
entertained by Bezrukov and Shaposhnikov [17] have been provided by our
original model [8]. We regret their omission in citing our original model [8
The Hawking temperature of expanding cosmological black holes
In the context of a debate on the correct expression of the Hawking
temperature of an expanding cosmological black hole, we show that the correct
expression in terms of the Hawking-Hayward quasi-local energy m of the hole is
T=1/(8\pi m(t)). This expression holds for comoving black holes and agrees with
a recent proposal by Saida, Harada, and Maeda.Comment: 5 latex pages, to appear in Phys. Rev. D. Some references adde
The fate of the Wilson-Fisher fixed point in non-commutative \phi^4
In this article we study non-commutative vector sigma model with the most
general \phi^4 interaction on Moyal-Weyl spaces. We compute the 2- and 4-point
functions to all orders in the large N limit and then apply the approximate
Wilson renormalization group recursion formula to study the renormalized
coupling constants of the theory. The non-commutative Wilson-Fisher fixed point
interpolates between the commutative Wilson-Fisher fixed point of the Ising
universality class which is found to lie at zero value of the critical coupling
constant a_* of the zero dimensional reduction of the theory, and a novel
strongly interacting fixed point which lies at infinite value of a_*
corresponding to maximal non-commutativity beyond which the two-sheeted
structure of a_* as a function of the dilation parameter disappears.Comment: 19 pages, 7 figures, v2:one reference adde
Conformal Invariance in Einstein-Cartan-Weyl space
We consider conformally invariant form of the actions in Einstein, Weyl,
Einstein-Cartan and Einstein-Cartan-Weyl space in general dimensions() and
investigate the relations among them. In Weyl space, the observational
consistency condition for the vector field determining non-metricity of the
connection can be obtained from the equation of motion. In Einstein-Cartan
space a similar role is played by the vector part of the torsion tensor. We
consider the case where the trace part of the torsion is the Kalb-Ramond type
of field. In this case, we express conformally invariant action in terms of two
scalar fields of conformal weight -1, which can be cast into some interesting
form. We discuss some applications of the result.Comment: 10 pages, version to appear MPL
New results for the missing quantum numbers labeling the quadrupole and octupole boson basis
The many -pole boson states, with ,
realize the irreducible representation (IR) for the group reduction chains
. They have been analytically
studied and widely used for the description of nuclear systems. However, no
analytical expression for the degeneracy of the 's IR,
determined by the reduction , is available. Thus, the
number of distinct values taken by has been so far obtained by
solving some complex equations. Here we derive analytical expressions for the
degeneracy characterizing the octupole and quadrupole boson states,
respectively. The merit of this work consists of the fact that it completes the
analytical expressions for the -pole boson basis.Comment: 10page
A combinatorial formula for homogeneous moments
We establish a combinatorial formula for homogeneous moments and give some
examples where it can be put to use. An application to the statistical
mechanics of interacting gauged vortices is discussed.Comment: 8 pages, LaTe
Possible way out of the Hawking paradox: Erasing the information at the horizon
We show that small deviations from spherical symmetry, described by means of
exact solutions to Einstein equations, provide a mechanism to "bleach" the
information about the collapsing body as it falls through the aparent horizon,
thereby resolving the information loss paradox. The resulting picture and its
implication related to the Landauer's principle in the presence of a
gravitational field, is discussed.Comment: 11 pages, Latex. Some comments added to answer to some raised
questions. Typos corected. Final version, to appear in Int. J. Modern. Phys.
- …