211 research outputs found

    Outcrop analogue study to determine reservoir properties of the Los Humeros and Acoculco geothermal fields, Mexico

    Get PDF
    The Los Humeros geothermal system is steam dominated and currently under exploration with 65 wells (23 producing). Having temperatures above 380 ∘C, the system is characterized as a super hot geothermal system (SHGS). The development of such systems is still challenging due to the high temperatures and aggressive reservoir fluids which lead to corrosion and scaling problems. The geothermal system in Acoculco (Puebla, Mexico; so far only explored via two exploration wells) is characterized by temperatures of approximately 300 ∘C at a depth of about 2 km. In both wells no geothermal fluids were found, even though a well-developed fracture network exists. Therefore, it is planned to develop an enhanced geothermal system (EGS). For better reservoir understanding and prospective modeling, extensive geological, geochemical, geophysical and technical investigations are performed within the scope of the GEMex project. Outcrop analogue studies have been carried out in order to identify the main fracture pattern, geometry and distribution of geological units in the area and to characterize all key units from the basement to the cap rock regarding petro- and thermo-physical rock properties and mineralogy. Ongoing investigations aim to identify geological and structural heterogeneities on different scales to enable a more reliable prediction of reservoir properties. Beside geological investigations, physical properties of the reservoir fluids are determined to improve the understanding of the hydrochemical processes in the reservoir and the fluid-rock interactions, which affect the reservoir rock properties

    Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function

    Get PDF
    Mitochondrial dysfunction and oxidative stress have been implicated in the etiology of Parkinson's disease. Therefore, pathways controlling mitochondrial activity rapidly emerge as potential therapeutic targets. Here, we explore the neuronal response to prolonged overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional regulator of mitochondrial function, both in vitro and in vivo. In neuronal primary cultures from the ventral midbrain, PGC-1α induces mitochondrial biogenesis and increases basal respiration. Over time, we observe an increasing proportion of the oxygen consumed by neurons which are dedicated to adenosine triphosphate production. In parallel to enhanced oxidative phosphorylation, PGC-1α progressively leads to a decrease in mitochondrial polarization. In the adult rat nigrostriatal system, adeno-associated virus (AAV)-mediated overexpression of PGC-1α induces the selective loss of dopaminergic markers and increases dopamine (DA) catabolism, leading to a reduction in striatal DA content. In addition, PGC-1α prevents the labeling of nigral neurons following striatal injection of the fluorogold retrograde tracer. When PGC-1α is expressed at higher levels following intranigral AAV injection, it leads to overt degeneration of dopaminergic neurons. Finally, PGC-1α overexpression does not prevent nigrostriatal degeneration in pathologic conditions induced by α-synuclein overexpression. Overall, we find that lasting overexpression of PGC-1α leads to major alterations in the metabolic activity of neuronal cells which dramatically impair dopaminergic function in vivo. These results highlight the central role of PGC-1α in the function and survival of dopaminergic neurons and the critical need for maintaining physiological levels of PGC-1α activity

    Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferator-activated receptor-γ co-activator (PGC)-1α is a transcriptional co-activator of antioxidant genes and a master regulator of mitochondrial biogenesis. Parkinson's disease (PD) is associated with oxidative stress and mitochondrial dysfunction and recent work suggests a role for PGC-1α. We hypothesized that the rs8192678 <it>PGC-1α </it>single nucleotide polymorphism (SNP) may influence risk or age of onset of PD. The A10398G mitochondrial SNP has been inversely associated with risk of PD in some studies. In the current study we analyzed whether rs8192678 or other <it>PGC-1α </it>SNPs affect PD risk or age of onset, singularly or in association with the A10398G SNP.</p> <p>Methods</p> <p>Genomic DNA samples from 378 PD patients and 173 age-matched controls were analyzed by multiplexed probe sequencing, followed by statistical analyses of the association of each SNP, alone or in combination, with risk or age of onset of PD. Adjustments were made for age of onset being less than the age of sampling, and for the observed dependence between these two ages. The PD samples were obtained as two separate cohorts, therefore statistical methods accounted for different sampling methods between the two cohorts, and data were analyzed using Cox regression adjusted for sampling in the risk set definition and in the model.</p> <p>Results</p> <p>The rs8192678 PGC-1α SNP was not associated with the risk of PD. However, an association of the <it>PGC-1α </it>rs8192678 GG variant with longevity was seen in control subjects (p = 0.019). Exploratory studies indicated that the CC variant of rs6821591 was associated with risk of early onset PD (p = 0.029), with PD age of onset (p = 0.047), and with longevity (p = 0.022). The rs2970848 GG allele was associated with risk of late onset PD (p = 0.027).</p> <p>Conclusions</p> <p>These data reveal possible associations of the <it>PGC-1α </it>SNPs rs6821591 and rs2970848 with risk or age of onset of PD, and of the <it>PGC-1α </it>rs8192678 GG and the rs6821591 CC variants with longevity. If replicated in other datasets, these findings may have important implications regarding the role of <it>PGC-1α </it>in PD and longevity.</p

    Toxicity of Neurons Treated with Herbicides and Neuroprotection by Mitochondria-Targeted Antioxidant SS31

    Get PDF
    The purpose of this study was to determine the neurotoxicity of two commonly used herbicides: picloram and triclopyr and the neuroprotective effects of the mitochondria-targeted antioxidant, SS31. Using mouse neuroblastoma (N2a) cells and primary neurons from C57BL/6 mice, we investigated the toxicity of these herbicides, and protective effects of SS1 peptide against picloram and triclopyr toxicity. We measured total RNA content, cell viability and mRNA expression of peroxiredoxins, neuroprotective genes, mitochondrial-encoded electron transport chain (ETC) genes in N2a cells treated with herbicides and SS31. Using primary neurons from C57BL/6 mice, neuronal survival was studied in neurons treated with herbicides, in neurons pretreated with SS31 plus treated with herbicides, neurons treated with SS31 alone, and untreated neurons. Significantly decreased total RNA content, and cell viability in N2a cells treated with picloram and triclopyr were found compared to untreated N2a cells. Decreased mRNA expression of neuroprotective genes, and ETC genes in cells treated with herbicides was found compared to untreated cells. Decreased mRNA expression of peroxiredoxins 1–6 in N2a cells treated with picloram was found, suggesting that picloram affects the antioxidant enzymes in N2a cells. Immunofluorescence analysis of primary neurons revealed that decreased neuronal branching and degenerating neurons in neurons treated with picloram and triclopyr. However, neurons pretreated with SS31 prevented degenerative process caused by herbicides. Based on these results, we propose that herbicides—picloram and triclopyr appear to damage neurons, and the SS31 peptide appears to protect neurons from herbicide toxicity

    Skeletal Muscle Modulates Huntington's Disease Pathogenesis in Mice: Role of Physical Exercise

    Get PDF
    Huntington's disease (HD) is a monogenic fatal neurodegenerative disorder. However, there is increasing evidence that HD is a pleiotropic systemic disorder. In particular, skeletal muscle metabolism is greatly affected in HD, which in turn can have a major impact on whole-body metabolism and energetic balance. Throughout an unbiased mutagenesis approach in HD mice, we have found that Scn4a, a skeletal muscle-specific sodium channel gene, is a modifier of the disease. Mutations in Scn4a enhance HD disease progression and weight loss by accelerating muscle waste and cachexia, increasing skeletal muscle activity and energy demands. At the molecular level, Scn4a mutations activate AMP-activated protein kinase (AMPK), leading to a fibre switch towards more oxidative types. These adaptations seen in HD; Scn4a double mutant muscles are similar to those observed in healthy individuals after endurance exercise training regimes. This prompted us to assess the effects of an endurance exercise regime in HD mice, independently showing that skeletal muscle adaptations leading to the activation of AMPK are detrimental for HD pathogenesis. Although it is undeniable that physical exercise can lead to many health benefits, our work shows that, at least under certain situations such as in HD, an endurance exercise routine could be a detrimental therapeutic option

    Ablation of Proliferating Cells in the CNS Exacerbates Motor Neuron Disease Caused by Mutant Superoxide Dismutase

    Get PDF
    Proliferation of glia and immune cells is a common pathological feature of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Here, to investigate the role of proliferating cells in motor neuron disease, SOD1G93A transgenic mice were treated intracerebroventicularly (ICV) with the anti-mitotic drug cytosine arabinoside (Ara-C). ICV delivery of Ara-C accelerated disease progression in SOD1G93A mouse model of ALS. Ara-C treatment caused substantial decreases in the number of microglia, NG2+ progenitors, Olig2+ cells and CD3+ T cells in the lumbar spinal cord of symptomatic SOD1G93A transgenic mice. Exacerbation of disease was also associated with significant alterations in the expression inflammatory molecules IL-1β, IL-6, TGF-β and the growth factor IGF-1

    A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of mutant copper/zinc superoxide dismutase (<it>SOD1</it>) in rodents has provided useful models for studying the pathogenesis of amyotrophic lateral sclerosis (ALS). Microglia have been shown to contribute to ALS disease progression in these models, although the mechanism of this contribution remains to be elucidated. Here, we present the first evidence of the effects of overexpression of mutant (TG G93A) and wild type (TG WT) human <it>SOD1 </it>transgenes on a set of functional properties of microglia relevant to ALS progression, including expression of integrin β-1, spreading and migration, phagocytosis of apoptotic neuronal cell debris, and intracellular calcium changes in response to an inflammatory stimulus.</p> <p>Results</p> <p>TG SOD1 G93A but not TG SOD1 WT microglia had lower expression levels of the cell adhesion molecule subunit integrin β-1 than their NTG control cells [NTG (G93A) and NTG (WT), respectively, 92.8 ± 2.8% on TG G93A, 92.0 ± 6.6% on TG WT, 100.0 ± 1.6% on NTG (G93A), and 100.0 ± 2.7% on NTG (WT) cells], resulting in decreased spreading ability, with no effect on ability to migrate. Both TG G93A and TG WT microglia had reduced capacity to phagocytose apoptotic neuronal cell debris (13.0 ± 1.3% for TG G93A, 16.5 ± 1.9% for TG WT, 28.6 ± 1.8% for NTG (G93A), and 26.9 ± 2.8% for NTG (WT) cells). Extracellular stimulation of microglia with ATP resulted in smaller increase in intracellular free calcium in TG G93A and TG WT microglia relative to NTG controls (0.28 ± 0.02 μM for TG G93A, 0.24 ± 0.03 μM for TG WT, 0.39 ± 0.03 μM for NTG (G93A), and 0.37 ± 0.05 μM for NTG (WT) microglia).</p> <p>Conclusions</p> <p>These findings indicate that, under resting conditions, microglia from mutant <it>SOD1 </it>transgenic mice have a reduced capacity to elicit physiological responses following tissue disturbances and that higher levels of stimulatory signals, and/or prolonged stimulation may be necessary to initiate these responses. Overall, resting mutant <it>SOD1</it>-overexpressing microglia may have reduced capacity to function as sensors of disturbed tissue/cellular homeostasis in the CNS and thus have reduced neuroprotective function.</p

    New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis</p> <p>Results</p> <p>Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg.</p> <p>Conclusion</p> <p>This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background.</p

    Adult Type 3 Adenylyl Cyclase–Deficient Mice Are Obese

    Get PDF
    Background: A recent study of obesity in Swedish men found that polymorphisms in the type 3 adenylyl cyclase (AC3) are associated with obesity, suggesting the interesting possibility that AC3 may play a role in weight control. Therefore, we examined the weight of AC3 mice over an extended period of time. Methodology/Principal Findings: We discovered that AC3 2/2 mice become obese as they age. Adult male AC3 2/2 mice are about 40 % heavier than wild type male mice while female AC3 2/2 are 70 % heavier. The additional weight of AC3 2/2 mice is due to increased fat mass and larger adipocytes. Before the onset of obesity, young AC3 2/2 mice exhibit reduced physical activity, increased food consumption, and leptin insensitivity. Surprisingly, the obesity of AC3 2/2 mice is not due to a loss of AC3 from white adipose and a decrease in lipolysis. Conclusions/Significance: We conclude that mice lacking AC3 exhibit obesity that is apparently caused by low locomotor activity, hyperphagia, and leptin insensitivity. The presence of AC3 in primary cilia of neurons of the hypothalamus suggests that cAMP signals generated by AC3 in the hypothalamus may play a critical role in regulation of body weight
    corecore