39 research outputs found
The modulation effect of longitudinal acupuncture on resting state functional connectivity in knee osteoarthritis patients
Recent advances in brain imaging have contributed to our understanding of the neural activity associated with acupuncture treatment. In this study, we investigated functional connectivity across longitudinal acupuncture treatments in older patients with knee osteoarthritis (OA). Over a period of 4 weeks (six treatments), we collected resting state functional magnetic resonance imaging (fMRI) scans from 30 patients before and after their first, third and sixth treatments. Clinical outcome showed a significantly greater pain subscore on the Knee Injury and Osteoarthritis Outcome Score (KOOS) (indicative of improvement) with verum acupuncture than with sham acupuncture. Independent component analysis (ICA) of the resting state fMRI data showed that the right frontoparietal network (rFPN) and the executive control network (ECN) showed enhanced functional connectivity (FC) with the rostral anterior cingulate cortex/medial prefrontal cortex, a key region in the descending pain modulatory system, in the verum groups as compared to the sham group after treatments. We also found that the rFPN connectivity with the left insula is (1) significantly associated with changes in KOOS pain score after treatments, and (2) significantly enhanced after verum acupuncture treatments as compared to sham treatment. Analysis of the acupuncture needle stimulation scan showed that compared with sham treatment, verum acupuncture activated the left operculum/insula, which also overlaps with findings observed in resting state analysis. Our results suggest that acupuncture may achieve its therapeutic effect on knee OA pain by modulating functional connectivity between the rFPN, ECN and the descending pain modulatory pathway. Clinical trial number: NCT0107939
Clinical relevance of DNA microarray analyses using archival formalin-fixed paraffin-embedded breast cancer specimens
Abstract
Background
The ability of gene profiling to predict treatment response and prognosis in breast cancers has been demonstrated in many studies using DNA microarray analyses on RNA from fresh frozen tumor specimens. In certain clinical and research situations, performing such analyses on archival formalin fixed paraffin-embedded (FFPE) surgical specimens would be advantageous as large libraries of such specimens with long-term follow-up data are widely available. However, FFPE tissue processing can cause fragmentation and chemical modifications of the RNA. A number of recent technical advances have been reported to overcome these issues. Our current study evaluates whether or not the technology is ready for clinical applications.
Methods
A modified RNA extraction method and a recent DNA microarray technique, cDNA-mediated annealing, selection, extension and ligation (DASL, Illumina Inc) were evaluated. The gene profiles generated from FFPE specimens were compared to those obtained from paired fresh fine needle aspiration biopsies (FNAB) of 25 breast cancers of different clinical subtypes (based on ER and Her2/neu status). Selected RNA levels were validated using RT-qPCR, and two public databases were used to demonstrate the prognostic significance of the gene profiles generated from FFPE specimens.
Results
Compared to FNAB, RNA isolated from FFPE samples was relatively more degraded, nonetheless, over 80% of the RNA samples were deemed suitable for subsequent DASL assay. Despite a higher noise level, a set of genes from FFPE specimens correlated very well with the gene profiles obtained from FNAB, and could differentiate breast cancer subtypes. Expression levels of these genes were validated using RT-qPCR. Finally, for the first time we correlated gene expression profiles from FFPE samples to survival using two independent microarray databases. Specifically, over-expression of ANLN and KIF2C, and under-expression of MAPT strongly correlated with poor outcomes in breast cancer patients.
Conclusion
We demonstrated that FFPE specimens retained important prognostic information that could be identified using a recent gene profiling technology. Our study supports the use of FFPE specimens for the development and refinement of prognostic gene signatures for breast cancer. Clinical applications of such prognostic gene profiles await future large-scale validation studies
Investigation of Exomic Variants Associated with Overall Survival in Ovarian Cancer
BACKGROUND: While numerous susceptibility loci for epithelial ovarian cancer (EOC) have been identified, few associations have been reported with overall survival. In the absence of common prognostic genetic markers, we hypothesize that rare coding variants may be associated with overall EOC survival and assessed their contribution in two exome-based genotyping projects of the Ovarian Cancer Association Consortium (OCAC). METHODS: The primary patient set (Set 1) included 14 independent EOC studies (4,293 patients) and 227,892 variants, and a secondary patient set (Set 2) included six additional EOC studies (1,744 patients) and 114,620 variants. Because power to detect rare variants individually is reduced, gene-level tests were conducted. Sets were analyzed separately at individual variants and by gene, and then combined with meta-analyses (73,203 variants and 13,163 genes overlapped). RESULTS: No individual variant reached genome-wide statistical significance. A SNP previously implicated to be associated with EOC risk and, to a lesser extent, survival, rs8170, showed the strongest evidence of association with survival and similar effect size estimates across sets (Pmeta = 1.1E-6, HRSet1 = 1.17, HRSet2 = 1.14). Rare variants in ATG2B, an autophagy gene important for apoptosis, were significantly associated with survival after multiple testing correction (Pmeta = 1.1E-6; Pcorrected = 0.01). CONCLUSIONS: Common variant rs8170 and rare variants in ATG2B may be associated with EOC overall survival, although further study is needed. IMPACT: This study represents the first exome-wide association study of EOC survival to include rare variant analyses, and suggests that complementary single variant and gene-level analyses in large studies are needed to identify rare variants that warrant follow-up study
Recommended from our members
Predicting Efficacies of Fractional Doses of Vaccines by Using Neutralizing Antibody Levels: Systematic Review and Meta-Analysis.
BACKGROUND: With the emergence of SARS-CoV-2 variants that have eluded immunity from vaccines and prior infections, vaccine shortages and vaccine effectiveness pose unprecedented challenges for governments in expanding booster vaccination programs. The fractionation of vaccine doses might be an effective strategy for helping society to face these challenges, as fractional doses may have efficacies comparable with those of the standard doses. OBJECTIVE: This study aims to investigate the relationship between vaccine immunogenicity and protection and to project efficacies of fractional doses of vaccines for COVID-19 by using neutralizing antibody levels. METHODS: In this study, we analyzed the relationship between in vitro neutralization levels and the observed efficacies against both asymptomatic infection and symptomatic infection, using data from 13 studies of 10 COVID-19 vaccines and from convalescent cohorts. We further projected efficacies for fractional doses, using neutralization as an intermediate variable, based on immunogenicity data from 51 studies included in our systematic review. RESULTS: In comparisons with the convalescent level, vaccine efficacy against asymptomatic infection and symptomatic infection increased from 8.8% (95% CI 1.4%-16.1%) to 71.8% (95% CI 63%-80.7%) and from 33.6% (95% CI 23.6%-43.6%) to 98.6% (95% CI 97.6%-99.7%), respectively, as the mean neutralization level increased from 0.1 to 10 folds of the convalescent level. Additionally, mRNA vaccines provided the strongest protection, which decreased slowly for fractional dosing with dosages between 50% and 100% of the standard dose. We also observed that although vaccine efficacy increased with the mean neutralization level, the rate of this increase was slower for vaccine efficacy against asymptomatic infection than for vaccine efficacy against symptomatic infection. CONCLUSIONS: Our results are consistent with studies on immune protection from SARS-CoV-2 infection. Based on our study, we expect that fractional-dose vaccination could provide partial immunity against SARS-CoV-2 and its variants. Our findings provide a theoretical basis for the efficacy of fractional-dose vaccines, serving as reference evidence for implementing fractional dosing vaccine policies in areas facing vaccine shortages and thereby mitigating disease burden. Fractional-dose vaccination could be a viable vaccination strategy comparable to full-dose vaccination and deserves further exploration
Modeling comparative cost-effectiveness of SARS-CoV-2 vaccine dose fractionation in India.
Funder: AIR@InnoHK administered by Innovation and Technology Commission, Hong KongFunder: The Engineering and Physical Sciences Research Council (EPSRC) Impact Acceleration Grant RG90413, and the International COVID-19 Data Alliance (ICODA), an initiative funded by the COVID-19 Therapeutics Accelerator and convened by Health Data Research UK.Funder: the Collaborative Research Fund [Project No. C7123-20G] of the Research Grants Council of the Hong Kong SAR GovernmentGiven global Coronavirus Disease 2019 (COVID-19) vaccine shortages and inequity of vaccine distributions, fractionation of vaccine doses might be an effective strategy for reducing public health and economic burden, notwithstanding the emergence of new variants of concern. In this study, we developed a multi-scale model incorporating population-level transmission and individual-level vaccination to estimate the costs of hospitalization and vaccination and the economic benefits of reducing COVID-19 deaths due to dose-fractionation strategies in India. We used large-scale survey data of the willingness to pay together with data of vaccine and hospital admission costs to build the model. We found that fractional doses of vaccines could be an economically viable vaccination strategy compared to alternatives of either full-dose vaccination or no vaccination. Dose-sparing strategies could save a large number of lives, even with the emergence of new variants with higher transmissibility