201 research outputs found
NNLL soft and Coulomb resummation for squark and gluino production at the LHC
We present predictions for the total cross sections for pair production of
squarks and gluinos at the LHC including a combined NNLL resummation of soft
and Coulomb gluon effects. We derive all terms in the NNLO cross section that
are enhanced near the production threshold, which include contributions from
spin-dependent potentials and so-called annihilation corrections. The NNLL
corrections at TeV range from up to for squark-squark
production to for gluino pair production relative to the NLO results and
reduce the theoretical uncertainties of the perturbative calculation to the
level. Grid files with our numerical results are publicly available.Comment: 42 pages, 17 figures. v2: published version; corrected fig. 6;
generalized eq.(A.5) to arbitrary SU(N) gauge group
Pretreatment with VEGF(R)-inhibitors reduces interstitial fluid pressure, increases intraperitoneal chemotherapy drug penetration, and impedes tumor growth in a mouse colorectal carcinomatosis model
Cytoreductive surgery combined with intraperitoneal chemotherapy (IPC) is currently the standard treatment for selected patients with peritoneal carcinomatosis of colorectal cancer. However, especially after incomplete cytoreduction, disease progression is common and this is likely due to limited tissue penetration and efficacy of intraperitoneal cytotoxic drugs. Tumor microenvironment-targeting drugs, such as VEGF(R) and PDGFR inhibitors, can lower the heightened interstitial fluid pressure in tumors, a barrier to drug delivery. Here, we investigated whether tumor microenvironment-targeting drugs enhance the effectiveness of intraperitoneal chemotherapy. A mouse xenograft model with two large peritoneal implants of colorectal cancer cells was developed to study drug distribution and tumor physiology during intraperitoneal Oxaliplatin perfusion. Mice were treated for six days with either Placebo, Imatinib (anti-PDGFR, daily), Bevacizumab (anti-VEGF, twice) or Pazopanib (anti-PDGFR, -VEGFR; daily) followed by intraperitoneal oxaliplatin chemotherapy. Bevacizumab and Pazopanib significantly lowered interstitial fluid pressure, increased Oxaliplatin penetration (assessed by laser ablation inductively coupled plasma mass spectrometry) and delayed tumor growth of peritoneal implants (assessed by MRI). Our findings suggest that VEGF(R)-inhibition may improve the efficacy of IPC, particularly for patients for whom a complete cytoreduction might not be feasible
Discovery of (S)-3′-hydroxyblebbistatin and (S)-3′-aminoblebbistatin : polar myosin II inhibitors with superior research tool properties
In search of myosin II inhibitors with superior research tool properties, a chemical optimization campaign of the blebbistatin scaffold was conducted in this paper. (S)-Blebbistatin is the best known small-molecule inhibitor of myosin II ATPase activity. Unfortunately, as a research tool this compound has several deficiencies: it is photolabile and (photo) toxic, has low water solubility, and its (fluorescent) precipitates interfere in (fluorescence) readouts. In view of obtaining tool compounds with improved properties, both enantiomers of a series of D-ring modified polar analogs were prepared. We identified (S)-3'-hydroxyblebbistatin (S)-2 and (S)-3'-aminoblebbistatin (S)-3 as two myosin II inhibitors with a 30-fold higher water solubility than (S)-blebbistatin. These molecules furthermore do not cause interference in (fluorescence) readouts. (S)-2 and (S)-3 thus are superior alternatives to (S)-blebbistatin as research tools to study myosin II
Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling
Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model.
Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells
- …