644 research outputs found

    Efficient Magnetization Reversal with Noisy Currents

    Full text link
    We propose to accelerate reversal of the ferromagnetic order parameter in spin valves by electronic noise. By solving the stochastic equations of motion we show that the current-induced magnetization switching time is drastically reduced by a modest level of externally generated current (voltage) noise. This also leads to a significantly lower power consumption for the switching process.Comment: 4 pages, 3 figure

    Non-collinear single-electron spin-valve transistors

    Full text link
    We study interaction effects on transport through a small metallic cluster connected to two ferromagnetic leads (a single-electron spin-valve transistor) in the "orthodox model" for the Coulomb blockade. The non-local exchange between the spin accumulation on the island and the ferromagnetic leads is shown to affect the transport properties such as the electric current and spin-transfer torque as a function of the magnetic configuration, gate voltage, and applied magnetic field.Comment: 4 pages, 3 figure

    The time-dependent rearrangement of the epithelial basement membrane in human skin wounds

    Get PDF
    In 62 human skin wounds (surgical wounds, stab wounds and lacerations after surgical treatment) we analyzed the immunohistochemical localization of collagen IV in the epithelial basement membrane. In 27 of these wounds the distribution of collagen VII, which represents a specific component of the basement membrane of stratified epithelia, was also analyzed. We were able to demonstrate a virtually identical co-distribution of both collagen IV and VII in the wound area with no significant time-dependent differences in the appearance of both collagen types. Fragments of the epithelial basement membrane could be detected in the wound area from as early as 4 days after wounding and after 8 days a complete restitution of the epithelial basement membrane was observed. In all cases with a wound age of more than 21 days the basement membrane was completely reformed over the former lesional area. The period between 8 and 21 days after wounding was characterized by a wide variability ranging from complete restitution to deposition of basement membrane fragments or total lack of the epidermal basement membrane

    Acute phosphate depletion and in vitro rat proximal tubule injury: Protection by glycine and acidosis

    Get PDF
    Acute phosphate depletion and in vitro rat proximal tubule injury: Protection by glycine and acidosis.The effects of phosphate (PO4) removal from Krebs Henseleit buffer on freshly isolated rat proximal tubules (rPT) were assessed by measuring Ca2+ uptake (nmol/mg protein), cellular adenosine triphosphate (ATP) (nmol/mg), tissue K+ content (nmol/mg) and lactate dehydrogenase (LDH) as an index of cell integrity. Ca2+ uptake increased by 50% in rPT incubated in zero PO4 medium as compared to control (2.6 ±0.1 vs. 3.9 ±0.19, P < 0.001) and LDH release increased 2.5-fold from 14.2 ±0.6 to 31.6 ±1.6%, P < 0.001. Neither verapamil (200 µM) nor mepacrine (50 µM) reduced Ca2+ uptake or decreased LDH release suggesting that the increased Ca2+ uptake was not occurring through potential operated channels and that phospholipase-induced cell injury was not the cause of increased LDH release. Either glycine (2 mM) or extracellular fluid acidosis (pH 7.06), however, significantly diminished rPT injury and Ca2+ uptake. Specifically, as compared to the increased LDH released in untreated, PO4-depleted rPT, LDH release was diminished significantly by glycine treatment (31.0 ±0.9 vs. 15.5 ±1.6%, P < 0.001) or acidosis (30.3 ±0.04 vs. 19.2 ±0.9%, P < 0.01). Ca2+ uptake did not increase in glycine treated tubules (2.6 ±0.1 vs. 2.8 ±0.2 nmol/mg, NS) or in the presence of acidosis (2.6 ±0.1 vs. 2.97 ±0.17 nmol/mg, NS). ATP concentrations were markedly reduced by PO4 depletion (2.8±0.2 vs. 4.8±0.3 nmol/mg, P < 0.001) and remained at low levels during either acidosis or glycine-induced protection. ATP depletion was accompanied by loss of K+ from rPT and this was only modestly attenuated by either glycine or acidosis. Total cell PO4 was not significantly altered, however, perchloric acid (PCA) extractable free PO4 was reduced significantly (33.3 ±4.5 to 15.9 ±3.5 nmol/mg, P < 0.01). The rPT injury, associated with acute PO4 depletion, may be related to Ca2+ uptake since Ca2+ uptake and LDH release were both attenuated by glycine administration or acidosis

    Exchange effects on electron transport through single-electron spin-valve transistors

    Full text link
    We study electron transport through single-electron spin-valve transistors in the presence of non-local exchange between the ferromagnetic leads and the central normal-metal island. The Coulomb interaction is described with the orthodox model for Coulomb blockade and we allow for noncollinear lead magnetization directions. Two distinct exchange mechanisms that have been discussed in the literature are shown to be of comparable strength and are taken into account on equal footing. We present results for the linear conductance as a function of gate voltage and magnetic configuration, and discuss the response of the system to applied magnetic fields.Comment: 15 pages, 6 figure

    Outcome of atypical haemolytic uraemic syndrome relapse after eculizumab withdrawal

    Get PDF
    Background. The introduction of eculizumab has significantly improved the outcome of patients with atypical haemolytic uraemic syndrome (aHUS). Because of the risk of relapse after discontinuation, eculizumab was proposed as life-long therapy. However, data on the outcome of relapse are limited. In the Netherlands, patients with aHUS are treated with a restrictive eculizumab regime and are included in a national observational study (CUREiHUS, Dutch Trial Register NTR5988/NL5833). Methods. For this interim safety analysis, we evaluated the outcome of all adult patients with a suspected relapse, defined as the need to intensify eculizumab after tapering or withdrawal of therapy. Results. We describe 11 patients who received renewed eculizumab therapy because of suspected relapse. In three patients with aHUS in native kidneys, estimated glomerular filtration rate (eGFR) returned to baseline value and remained stable without overt proteinuria after follow-up. Six out of eight transplanted patients responded to eculizumab therapy with improvement in eGFR. After a median follow-up of 24.6 months, a reduction of eGFR >= 25% was observed in three of these transplanted patients, which was attributed to the aHUS relapse in only one patient. Conclusions. This interim analysis suggests that re-treatment with eculizumab after relapse is safe and feasible. We will continue to use our restrictive treatment strategy

    Salt, but not protein intake, is associated with accelerated disease progression in autosomal dominant polycystic kidney disease

    Get PDF
    In autosomal dominant polycystic kidney disease (ADPKD), there are only scarce data on the effect of salt and protein intake on disease progression. Here we studied association of these dietary factors with the rate of disease progression in ADPKD, and what the mediating factors are by analyzing an observational cohort of 589 patients with ADPKD. Salt and protein intake were estimated from 24-hour urine samples and the plasma copeptin concentration measured as a surrogate for vasopressin. The association of dietary intake with annual change in the estimated glomerular filtration rate (eGFR) and height adjusted total kidney volume (htTKV) growth was analyzed with mixed models. In case of significant associations, mediation analyses were performed to elucidate potential mechanisms. These patients (59% female) had a mean baseline age of 47, eGFR 64 mL/min/1.73m2 and the median htTKV was 880 mL. The mean estimated salt intake was 9.1 g/day and protein intake 84 g/day. During a median follow-up of 4.0 years, eGFR was assessed a median of six times and 24-hour urine was collected a median of five times. Salt intake was significantly associated with annual change in eGFR of -0.11 (95% confidence interval (0.20 - - 0.02) mL/min/1.73m2 per gram of salt, whereas protein intake was not (-0.00001 (-0.01 - 0.01) mL/min/1.73m2 per gram of protein. The effect of salt intake on eGFR slope was significantly mediated by plasma copeptin (crude analysis: 77% mediation, and, adjusted analysis: 45% mediation), but not by systolic blood pressure. Thus, higher salt, but not higher protein intake may be detrimental in ADPKD. The substantial mediation by plasma copeptin suggests that this effect is primarily a consequence of a salt-induced rise in vasopressin

    The impact of automated eGFR reporting and education on nephrology service referrals

    Get PDF
    Background. Serum creatinine concentration is an unreliable and insensitive marker of chronic kidney disease (CKD). To improve CKD detection, the Australasian Creatinine Consensus Working Committee recommended reporting of estimated glomerular filtration rate (eGFR) using the four-variable Modification of Diet in Renal Disease (MDRD) formula with every request for serum creatinine concentration. The aim of this study was to evaluate the impact of automated laboratory reporting of eGFR on the quantity and quality of referrals to nephrology services in Southeast Queensland, Australia

    Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility

    Get PDF
    Scope: Dietary advanced glycation endproducts (AGEs) are associated with negative biological effects, possibly due to accumulation in plasma and tissues and through modulation of inflammation and gut microbiota. Whether these biological consequences are reversible by limiting dietary AGE intake is unknown. Methods and results: Young healthy C57BL/6 mice were fed a standard chow (n = 10) or a baked chow high AGE-diet (n = 10) (~1.8–6.9 fold increased protein-bound Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl) lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1)) for 10 weeks or a switch diet with baked chow for 5 weeks followed by 5 weeks of standard chow (n = 10). We assessed accumulation of AGEs in plasma, kidney, and liver and measured inflammatory markers and gut microbial composition. After 10 weeks of baked chow, a substantial panel of AGEs were increased in plasma, liver, and kidney. These increases were normalized after the switch diet. The inflammatory z-score increased after the baked chow diet. Gut microbial composition differed significantly between groups, with enriched Dubosiella spp. dominating these alterations. Conclusion: A high AGE-diet led to an increase of AGEs in plasma, kidney, and liver and to more inflammation and modification of the gut microbiota. These effects were reversed or discontinued by a diet lower in AGEs.Peer reviewe
    • …
    corecore