8,228 research outputs found
The axial anomaly in lattice QED. A universal point of view
We give a perturbative proof that U(1) lattice gauge theories generate the
axial anomaly in the continuum limit under very general conditions on the
lattice Dirac operator. These conditions are locality, gauge covariance and the
absense of species doubling. They hold for Wilson fermions as well as for
realizations of the Dirac operator that satisfy the Ginsparg-Wilson relation.
The proof is based on the lattice power counting theorem.Comment: 7 pages, Latex2e, some misprints removed, reference inserte
Investigation of the role of thermal boundary layer processes in initiating convection under the NASA SPACE Field Program
The current NWS ground based network is not sufficient to capture the dynamic or thermodynamic structure leading to the initiation and organization of air mass moist convective events. Under this investigation we intend to use boundary layer mesoscale models (McNider and Pielke, 1981) to examine the dynamic triggering of convection due to topography and surface thermal contrasts. VAS and MAN's estimates of moisture will be coupled with the dynamic solution to provide an estimate of the total convective potential. Visible GOES images will be used to specify incoming insolation which may lead to surface thermal contrasts and JR skin temperatures will be used to estimate surface moisture (via the surface thermal inertia) (Weizel and Chang, 1988) which can also induce surface thermal contrasts. We will use the SPACE-COHMEX data base to evaluate the ability of the joint mesoscale model satellite products to show skill in predicting the development of air mass convection. We will develop images of model vertical velocity and satellite thermodynamic measures to derive images of predicted convective potential. We will then after suitable geographic registration carry out a pixel by pixel correlation between the model/satellite convective potential and the 'truth' which are the visible images. During the first half of the first year of this investigation we have concentrated on two aspects of the project. The first has been in generating vertical velocity fields from the model for COHMEX case days. We have taken June 19 as the first case and have run the mesoscale model at several different grid resolutions. We are currently developing the composite model/satellite convective image. The second aspect has been the attempted calibration of the surface energy budget to provide the proper horizontal thermal contrasts for convective initiation. We have made extensive progress on this aspect using the FIFE data as a test data set. The calibration technique looks very promising
Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus
The order Picornavirales includes several plant viruses that are currently classified into the families Comoviridae (genera Comovirus, Fabavirus and Nepovirus) and Sequiviridae (genera Sequivirus and Waikavirus) and into the unassigned genera Cheravirus and Sadwavirus. These viruses share properties in common with other picornavirales (particle structure, positive-strand RNA genome with a polyprotein expression strategy, a common replication block including type III helicase, a 3C-like cysteine proteinase and type I RNA-dependent RNA polymerase). However, they also share unique properties that distinguish them from other picornavirales. They infect plants and use specialized proteins or protein domains to move through their host. In phylogenetic analysis based on their replication proteins, these viruses form a separate distinct lineage within the picornavirales branch. To recognize these common properties at the taxonomic level, we propose to create a new family termed “Secoviridae” to include the genera Comovirus, Fabavirus, Nepovirus, Cheravirus, Sadwavirus, Sequivirus and Waikavirus. Two newly discovered plant viruses share common properties with members of the proposed family Secoviridae but have distinct specific genomic organizations. In phylogenetic reconstructions, they form a separate sub-branch within the Secoviridae lineage. We propose to create a new genus termed Torradovirus (type species, Tomato torrado virus) and to assign this genus to the proposed family Secoviridae
Efficiency Effects of Quality of Service and Environmental Factors: Experience from Norwegian Electricity Distribution
Since the 1990s, efficiency and benchmarking analysis has increasingly been used in network utilities research and regulation. A recurrent concern is the effect of environmental factors that are beyond the influence of firms (observable heterogeneity) and factors that are not identifiable (unobserved heterogeneity) on measured cost and quality performance of firms. This paper analyses the effect of geographic and weather factors and unobserved heterogeneity on a set of 128 Norwegian electricity distribution utilities for the 2001-2004 period. We utilize data on almost 100 geographic and weather variables to identify real economic inefficiency while controlling for observable and unobserved heterogeneity. We use the factor analysis technique to reduce the number of environmental factors into few composite variables and to avoid the problem of multi-collinearity. We then estimate the established stochastic frontier models of Battese and Coelli (1992; 1995) and the recent true fixed effects models of Greene (2004; 2005) without and with environmental variables. In the former models some composite environmental variables have a significant effect on the performance of utilities. These effects vanish in the true fixed effects models. However, the latter models capture the entire unobserved heterogeneity and therefore show significantly higher average efficiency scores
Embryogenesis in the Dwarf Seahorse, Hippocampus zosterae (Syngnathidae)
Embryogenesis of the dwarf seahorse, Hippocampus zosterae, was studied by scanning electron microscopy of a series of developmental stages. Stages ranged from initial cleavage of the egg through term embryos. Embryos hatch from their egg envelopes about midway through development, yet remain nestled in stromal chambers of vascularized epithelium within the male brood pouch until their yolk reserves are consumed. The difference in body shape between the pipefish and seahorse first becomes discernible during mid-development, just before hatching. At this stage, embryos begin to develop their characteristic prehensile tail in contrast to the straight body and typical caudal fin of most species of pipefish. Post-hatching, ‘yolk-sac’ larvae have a well developed head, that is set at a right angle to the body axis, and fully formed fins. As seahorse embryos approach term, lepidotrichia calcify, and the prehensile tail is capable of muscular contraction. Dermal scutes first appear at this stage and ossify in the term embryo. The dermal armor is then fully formed and functional. At term, the yolk reserves have been depleted, and the young are released from the brood pouch as free-swimming, free-feeding miniature versions of the adults
Carbon dioxide free production of hydrogen
The present report summarizes the theoretical modelling and experimental investigation results of the study on the direct thermal methane cracking. This work is a part of the
LIMTECH-Project (Liquid Metal Technologies) funded of Helmholtz Alliance and was carried
out from 2012 to 2017. The Project-part B5 “CO2-free production of hydrogen” focused on
experimental testing and particularly on modelling the novel methane cracking method
based on liquid metal technology. The new method uses a bubble column reactor, filled
with liquid metal, where both the chemical reaction of methane decomposition and the separation of gas fraction from solid carbon occur. Such reactor system was designed and built in the liquid metal laboratory (KALLA) at KIT. The influences of liquid metal temperature distribution in reactor and feed gas flow rate on methane conversion ratio were investigated experimentally at the temperature range from 930°C to 1175 °C and methane flow rate at the
reactor inlet from 50 to 200 mLn/min. In parallel with experimental investigations, a thermochemical model, giving insight in the influence of the above mentioned parameters has been developed at KIT and a CFD model was developed at LUH to get an overview about the bubble dynamics in the reaction system. The influence of different bubble sizes and shapes,
multi-inlet coalescence effects as well as the potential of electromagnetic stirring have been
investigated
Carbon dioxide free production of hydrogen
The present report summarizes the theoretical modelling and experimental investigation results of the study on the direct thermal methane cracking. This work is a part of the LIMTECH-Project (Liquid Metal Technologies) funded of Helmholtz Alliance and was carried out from 2012 to 2017. The Project-part B5 "CO2-free production of hydrogen" focused on experimental testing and particularly on modelling the novel methane cracking method based on liquid metal technology. The new method uses a bubble column reactor, filled with liquid metal, where both the chemical reaction of methane decomposition and the separation of gas fraction from solid carbon occur. Such reactor system was designed and built in the liquid metal laboratory (KALLA) at KIT. The influences of liquid metal temperature distribution in reactor and feed gas flow rate on methane conversion ratio were investigated experimentally at the temperature range from 930 C to 1175 C and methane flow rate at the reactor inlet from 50 to 200 mLn/min. In parallel with experimental investigations, a thermochemical model, giving insight in the influence of the above mentioned parameters has been developed at KIT and a CFD model was developed at LUH to get an overview about the bubble dynamics in the reaction system. The influence of different bubble sizes and shapes, multi-inlet coalescence effects as well as the potential of electromagnetic stirring have been investigated
Breathing FIRE: How Stellar Feedback Drives Radial Migration, Rapid Size Fluctuations, and Population Gradients in Low-Mass Galaxies
We examine the effects of stellar feedback and bursty star formation on
low-mass galaxies ()
using the FIRE (Feedback in Realistic Environments) simulations. While previous
studies emphasized the impact of feedback on dark matter profiles, we
investigate the impact on the stellar component: kinematics, radial migration,
size evolution, and population gradients. Feedback-driven outflows/inflows
drive significant radial stellar migration over both short and long timescales
via two processes: (1) outflowing/infalling gas can remain star-forming,
producing young stars that migrate within their first , and (2) gas outflows/inflows drive strong fluctuations in the
global potential, transferring energy to all stars. These processes produce
several dramatic effects. First, galaxies' effective radii can fluctuate by
factors of over , and these rapid size fluctuations
can account for much of the observed scatter in radius at fixed
Second, the cumulative effects of many outflow/infall episodes steadily heat
stellar orbits, causing old stars to migrate outward most strongly. This
age-dependent radial migration mixes---and even inverts---intrinsic age and
metallicity gradients. Thus, the galactic-archaeology approach of calculating
radial star-formation histories from stellar populations at can be
severely biased. These effects are strongest at , the same regime where feedback most
efficiently cores galaxies. Thus, detailed measurements of stellar kinematics
in low-mass galaxies can strongly constrain feedback models and test baryonic
solutions to small-scale problems in CDM.Comment: Accepted to ApJ (820, 131) with minor revisions from v1. Figure 4 now
includes dark matter. Main results in Figures 7 and 1
- …